
Decomposing Permutation Automata

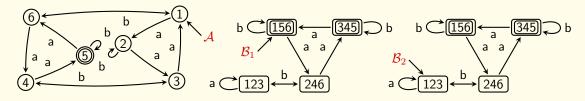
I. Jecker (University of Warsaw, Poland), N. Mazzocchi (ISTA, Austria) and P. Wolf (University of Bergen, Norway)

Compositionality

Verification application : Simplify design

Formalization for DFAs

• The DFA \mathcal{B} is a factor of \mathcal{A} if: $|\mathcal{B}| < |\mathcal{A}| \quad \land \quad L(\mathcal{A}) \subseteq L(\mathcal{B})$


- \mathcal{A} is a *k*-composite if:
 - $L(\mathcal{A}) = \bigcap_{i=1}^{k} L(\mathcal{B}_i)$ where each \mathcal{B}_i is a factor

• \mathcal{A} is composite if it is *k*-composite for some *k*, otherwise it is prime.

• The orbit DFA of \mathcal{A} induced by the subset of states S is defined as the DFA obtain by subset contruction on \mathcal{A} , where S is the initial state

Key Approach

- \bullet A permutation DFA ${\cal A}$ is composite iff it can be decomposed into polynomially many orbit DFAs
- \bullet If ${\cal A}$ is commutative, orbit DFAs defined with a state-space that partitions the state-space of ${\cal A}$ suffice

Permutation DFA decomposable into the orbit DFAs induced by $\{1, 5, 6\}$ and $\{1, 2, 3\}$: $L(\mathcal{A}) = \bigcap_{i=1}^{2} L(\mathcal{B}_i)$

Summary

Automata class	Composite?	<i>k</i> -Composite?
DFAs	EXPSPACE $[1]$	PSpace
Permut. DFAs	NP/FPT^*	PSpace
Commut. permut. DFAs	NLOGSPACE	NP-COMPLETE
Unary DFAs	LogSpace [2]	LogSpace

Large decomposition		
For infinitely many $n,m\in\mathbb{N}$, there		
exist a commutative permutation		
DFA with n states and m letters,		
requiring $\left(\sqrt[m]{n}-1 ight)^{m-1}$ factors to		
be decomposed.		

* Fixed Parameter Tractable in the number of rejecting states

O. Kupferman and J. Mosheiff *Prime languages*

In J. of Inf. and Comput. 2015

I. Jecker, O. Kupferman and N. Mazzocchi Unary Prime languages In MFCS proceedings 2020