
Safety and

Liveness of

Quantitative

Automata

Udi Boker †

Thomas A. Henzinger ‡

Nicolas Mazzocchi ‡

N. Ege Saraç ‡

† Reichman University, Israel

‡ Institute of Science and Technology, Austria

CONCUR 2023 – Antwerp Belgium

Boolean Properties

Definition

A Boolean property Φ ⊆ Σω or equivalently Φ : Σω → {0, 1}, is a language

Safety

Requests Not Duplicated

Liveness

All Requests Granted

Theorem: Decomposition1

All Boolean property Φ can be expressed by Φ = Φsafe ∩ Φlive

Φsafe is safe

Φlive is live

2

Boolean Properties

Definition

A Boolean property Φ ⊆ Σω or equivalently Φ : Σω → {0, 1}, is a language

Safety

Requests Not Duplicated

Liveness

All Requests Granted

Theorem: Decomposition1

All Boolean property Φ can be expressed by Φ = Φsafe ∩ Φlive

Φsafe is safe

Φlive is live

1 Alpern, Schneider. Defining liveness. 1985
3

Quantitative Properties

Definition

A quantitative property2 Φ : Σω → D is a quantitative language where D is a complete lattice

Safety3

Minimal Response Time

Liveness3

Average Response Time

Theorem: Decomposition

All quantitative property Φ can be expressed by Φ(w) = min{Φsafe(w), Φlive(w)} for all w ∈ Σω

Φsafe is quantitative safe

Φlive is quantitative live

2 Chatterjee, Doyen, Henzinger. Quantitative Languages. 2010
4

Quantitative Properties

Definition

A quantitative property Φ : Σω → D is a quantitative language where D is a complete lattice

Safety3

Minimal Response Time

Liveness3

Average Response Time

Theorem: Decomposition3

All quantitative property Φ can be expressed by Φ(w) = min{Φsafe(w), Φlive(w)} for all w ∈ Σω

Φsafe is quantitative safe

Φlive is quantitative live

3 Henzinger, Mazzocchi, Saraç. Quantitative Safety and Liveness. 2023
5

Quantitative Automata

Runs

a1|x1 a2|x2

Word: w = a1a2 . . . Value: x = f (x1x2 . . .)

Subset of quantitative properties

totally ordered domain

finitely many weights

supremum-closed

∀u ∈ Σ∗ : supv∈Σω A(uv) ∈ {A(uv ′) : v ′ ∈ Σω}

Value functions

Inf, Sup, LimInf, LimSup
LimInfAvg, LimSupAvg, DSum

Non-determinism

w |x

w |y

A(w) = sup{values of w ’s runs}

6

Quantitative Automata

Runs

a1|x1 a2|x2

Word: w = a1a2 . . . Value: x = f (x1x2 . . .)

Subset of quantitative properties

totally ordered domain

finitely many weights

supremum-closed

∀u ∈ Σ∗ : supv∈Σω A(uv) ∈ {A(uv ′) : v ′ ∈ Σω}

Value functions

Inf, Sup, LimInf, LimSup
LimInfAvg, LimSupAvg, DSum

Non-determinism

w |x

w |y

A(w) = sup{values of w ’s runs}

7

Quantitative Automata

Runs

a1|x1 a2|x2

Word: w = a1a2 . . . Value: x = f (x1x2 . . .)

Subset of quantitative properties

totally ordered domain

finitely many weights

supremum-closed

∀u ∈ Σ∗ : supv∈Σω A(uv) ∈ {A(uv ′) : v ′ ∈ Σω}

Value functions

Inf, Sup, LimInf, LimSup
LimInfAvg, LimSupAvg, DSum

Non-determinism

w |x

w |y

A(w) = sup{values of w ’s runs}

8

Quantitative Automata

Runs

a1|x1 a2|x2

Word: w = a1a2 . . . Value: x = f (x1x2 . . .)

Subset of quantitative properties

totally ordered domain

finitely many weights

supremum-closed

∀u ∈ Σ∗ : supv∈Σω A(uv) ∈ {A(uv ′) : v ′ ∈ Σω}

Value functions

Inf, Sup, LimInf, LimSup
LimInfAvg, LimSupAvg, DSum

Non-determinism

w |x

w |y

A(w) = sup{values of w ’s runs}

9

Quantitative Automata

Runs

a1|x1 a2|x2

Word: w = a1a2 . . . Value: x = f (x1x2 . . .)

Subset of quantitative properties

totally ordered domain

finitely many weights

supremum-closed

∀u ∈ Σ∗ : supv∈Σω A(uv) ∈ {A(uv ′) : v ′ ∈ Σω}

Value functions

Inf, Sup, LimInf, LimSup
LimInfAvg, LimSupAvg, DSum

Non-determinism

w |x

w |y

A(w) = sup{values of w ’s runs}

10

Example of LimSup Automaton

A

p0 p1

p2q

on:2

on:2

on:2

off:0
off:0

off:0

eco:1

eco:1

eco:1

err:0
err:0

err:0

Σ:0

No Error

∀u ∈ (Σ \ {err})∗ : A(u onω) = 2

∀u ∈ (Σ \ {err})∗ : A(u ecoω) = 1

∀u ∈ (Σ \ {err})∗ : A(u offω) = 0

After Error

∀v ∈ Σω : A(err v) = 0

w = off on eco off eco off eco . . . off eco . . . A(w) = LimSup 0210101 . . . 01 · · · = 1

11

Example of LimSup Automaton

A

p0 p1

p2q

on:2

on:2

on:2

off:0
off:0

off:0

eco:1

eco:1

eco:1

err:0
err:0

err:0

Σ:0

No Error

No Error

∀u ∈ (Σ \ {err})∗ : A(u onω) = 2

∀u ∈ (Σ \ {err})∗ : A(u ecoω) = 1

∀u ∈ (Σ \ {err})∗ : A(u offω) = 0

After Error

∀v ∈ Σω : A(err v) = 0

w = off on eco off eco off eco . . . off eco . . . A(w) = LimSup 0210101 . . . 01 · · · = 1

12

Example of LimSup Automaton

A

p0 p1

p2q

on:2

on:2

on:2

off:0
off:0

off:0

eco:1

eco:1

eco:1

err:0
err:0

err:0

Σ:0

No Error

∀u ∈ (Σ \ {err})∗ : A(u onω) = 2

∀u ∈ (Σ \ {err})∗ : A(u ecoω) = 1

∀u ∈ (Σ \ {err})∗ : A(u offω) = 0

After Error

∀v ∈ Σω : A(err v) = 0

w = off on eco off eco off eco . . . off eco . . . A(w) = LimSup 0210101 . . . 01 · · · = 1

13

Boolean Safety

Intuition

Every wrong hypothesis w ∈ Φ can always be rejected after a finite number of observations

Example: Requests Not Duplicated

Σ = {r, g, t, o} r : request, g : grant, t : clock-tick, o : other

Φ = no r is followed by another r without some g in between

14

Boolean Safety

Intuition

Every wrong hypothesis w ∈ Φ can always be rejected after a finite number of observations

Example: Requests Not Duplicated

Σ = {r, g, t, o} r : request, g : grant, t : clock-tick, o : other

Φ = no r is followed by another r without some g in between

w = t r t o t t o g t o o r t t o r t t o g t r · · ·
w ∈ Φ : T F · · ·

15

Boolean Safety

Intuition

Every wrong hypothesis w ∈ Φ can always be rejected after a finite number of observations

Example: Requests Not Duplicated

Σ = {r, g, t, o} r : request, g : grant, t : clock-tick, o : other

Φ = no r is followed by another r without some g in between

Definition

A boolean property Φ ⊆ Σω is safe when

∀w ∈ Σω : w /∈ Φ =⇒ ∃u ⊑ w : ∀v ∈ Σω : uv /∈ Φ

16

Quantitative Safety

Intuition

Every wrong hypothesis Φ(w) ≥ x , can always be rejected after a finite number of observations

Example: Minimal Response Time

Σ = {r, g, t, o} r : request, g : grant, t : clock-tick, o : other

Φmin(w) = greatest lower bound on the occurrences of t between all matching r/g in w

17

Quantitative Safety

Intuition

Every wrong hypothesis Φ(w) ≥ x , can always be rejected after a finite number of observations

Example: Minimal Response Time

Σ = {r, g, t, o} r : request, g : grant, t : clock-tick, o : other

Φmin(w) = greatest lower bound on the occurrences of t between all matching r/g in w

w = t r t o t t o g t o o r t t o r t t o g t r · · ·
Φ(w) ≥ 3: T F . . · · ·

18

Quantitative Safety

Intuition

Every wrong hypothesis Φ(w) ≥ x , can always be rejected after a finite number of observations

Example: Minimal Response Time

Σ = {r, g, t, o} r : request, g : grant, t : clock-tick, o : other

Φmin(w) = greatest lower bound on the occurrences of t between all matching r/g in w

Definition4

A quantitative property Φ : Σω → D is safe when

∀x ∈ D : ∀w ∈ Σω : Φ(w) ̸≥ x =⇒ ∃u ⊑ w : sup
v∈Σω

Φ(uv) ̸≥ x

4 Henzinger, Mazzocchi, Saraç. Quantitative Safety and Liveness. 2023
19

Safety of Quantitative Automata

Boolean Safety

∀w ∈ Σω : w /∈ Φ =⇒ ∃u ⊑ w : ∀v ∈ Σω : uv /∈ Φ

Quantitative Safety

∀x ∈ D : ∀w ∈ Σω : Φ(w) ̸≥ x =⇒ ∃u ⊑ w : supv∈Σω Φ(uv) ̸≥ x

Threshold safety

A quantitative property Φ : Σω → D is threshold-safe when

∀x ∈ D : Φ≥x = {w ∈ Σω | Φ(w) ≥ x} is safe

Theorem: For totally ordered domain, threshold-safety = quantitative safety

20

Safety of Quantitative Automata

Boolean Safety

∀w ∈ Σω : w /∈ Φ =⇒ ∃u ⊑ w : ∀v ∈ Σω : uv /∈ Φ

Quantitative Safety

∀x ∈ D : ∀w ∈ Σω : Φ(w) ̸≥ x =⇒ ∃u ⊑ w : supv∈Σω Φ(uv) ̸≥ x

Threshold safety

A quantitative property Φ : Σω → D is threshold-safe when

∀x ∈ D : Φ≥x = {w ∈ Σω | Φ(w) ≥ x} is safe

Theorem: For totally ordered domain, threshold-safety = quantitative safety

21

Safety of Quantitative Automata

Boolean Safety

∀w ∈ Σω : w /∈ Φ =⇒ ∃u ⊑ w : ∀v ∈ Σω : uv /∈ Φ

Quantitative Safety

∀x ∈ D : ∀w ∈ Σω : Φ(w) ̸≥ x =⇒ ∃u ⊑ w : supv∈Σω Φ(uv) ̸≥ x

Threshold safety

A quantitative property Φ : Σω → D is threshold-safe when

∀x ∈ D : Φ≥x = {w ∈ Σω | Φ(w) ≥ x} is safe

Theorem: For totally ordered domain, threshold-safety = quantitative safety

22

Quantitative Safety Closure

Intuition

The safety closure Φ⋆ is the least safety property that bound Φ from above

Example: Minimal Response Time

Σ = {r, g, t, o}
Φmin(w) = greatest lower bound on the occurrences of t between all matching r/g in w

Theorem5 : Φ is safe ⇐⇒ Φ = Φ⋆

23

Quantitative Safety Closure

Intuition

The safety closure Φ⋆ is the least safety property that bound Φ from above

Example: Minimal Response Time

Σ = {r, g, t, o}
Φmin(w) = greatest lower bound on the occurrences of t between all matching r/g in w

w = t r t o t t o g t o o r t t o r t t o g t r · · ·
least upper bound: ∞ 3 2 . . · · ·

Theorem5 : Φ is safe ⇐⇒ Φ = Φ⋆

24

Quantitative Safety Closure

Intuition

The safety closure Φ⋆ is the least safety property that bound Φ from above

Example: Minimal Response Time

Σ = {r, g, t, o}
Φmin(w) = greatest lower bound on the occurrences of t between all matching r/g in w

Definition5

Given Φ : Σω → D, its safety closure is Φ⋆(w) := infu⊑w supv∈Σω Φ(uv) for all w ∈ Σω

Theorem5: Φ is safe ⇐⇒ Φ = Φ⋆

5 Henzinger, Mazzocchi, Saraç. Quantitative Safety and Liveness. 2023
25

Example of Safety Closure

A

p0 p1

p2q

on:2

on:2

on:2

off:0
off:0

off:0

eco:1

eco:1

eco:1

err:0
err:0

err:0

Σ:0

A⋆

p0 p1

p2q

on:2

on:2

on:2

off:2
off:2

off:2

eco:2

eco:2

eco:2

err:0
err:0

err:0

Σ:0

A is not safe since A ̸= A⋆ as witnessed by A(ecoω) = 1, A⋆(ecoω) = 2

26

Example of Safety Closure

A

p0 p1

p2q

on:2

on:2

on:2

off:0
off:0

off:0

eco:1

eco:1

eco:1

err:0
err:0

err:0

Σ:0

A⋆

p0 p1

p2q

on:2

on:2

on:2

off:2
off:2

off:2

eco:2

eco:2

eco:2

err:0
err:0

err:0

Σ:0

A is not safe since A ̸= A⋆ as witnessed by A(ecoω) = 1, A⋆(ecoω) = 2

27

Deciding Safety

Reduction to language equivalence problem

Classes of Sup, LimInf and LimSup are decidable for equivalence: determine whether A = A⋆

Safe value function

Classes of Inf and DSum automata contain only safe automata: safety is trivial

About LimInfAvg and LimSupAvg

Avg(x1x2 . . .)− Avg(y1y2 . . .) ̸= Avg((x1 − y1)(x2 − y2) . . .)

Equals if y1y2 . . . is eventually constant

A = A⋆ ⇐⇒ A− A⋆ = 0 because all runs of A⋆ is eventually constant

Determine whether A− A⋆ = 0, by reducing the limitedness of distance automata

Theorem: Safety is decidable for Inf, Sup, LimInf, LimSup, Avg, and DSum automata

28

Deciding Safety

Reduction to language equivalence problem

Classes of Sup, LimInf and LimSup are decidable for equivalence: determine whether A = A⋆

Safe value function

Classes of Inf and DSum automata contain only safe automata: safety is trivial

About LimInfAvg and LimSupAvg

Avg(x1x2 . . .)− Avg(y1y2 . . .) ̸= Avg((x1 − y1)(x2 − y2) . . .)

Equals if y1y2 . . . is eventually constant

A = A⋆ ⇐⇒ A− A⋆ = 0 because all runs of A⋆ is eventually constant

Determine whether A− A⋆ = 0, by reducing the limitedness of distance automata

Theorem: Safety is decidable for Inf, Sup, LimInf, LimSup, Avg, and DSum automata

29

Deciding Safety

Reduction to language equivalence problem

Classes of Sup, LimInf and LimSup are decidable for equivalence: determine whether A = A⋆

Safe value function

Classes of Inf and DSum automata contain only safe automata: safety is trivial

About LimInfAvg and LimSupAvg

Avg(x1x2 . . .)− Avg(y1y2 . . .) ̸= Avg((x1 − y1)(x2 − y2) . . .)

Equals if y1y2 . . . is eventually constant

A = A⋆ ⇐⇒ A− A⋆ = 0 because all runs of A⋆ is eventually constant

Determine whether A− A⋆ = 0, by reducing the limitedness of distance automata

Theorem: Safety is decidable for Inf, Sup, LimInf, LimSup, Avg, and DSum automata

30

Deciding Safety

Reduction to language equivalence problem

Classes of Sup, LimInf and LimSup are decidable for equivalence: determine whether A = A⋆

Safe value function

Classes of Inf and DSum automata contain only safe automata: safety is trivial

About LimInfAvg and LimSupAvg

Avg(x1x2 . . .)− Avg(y1y2 . . .) ̸= Avg((x1 − y1)(x2 − y2) . . .)

Equals if y1y2 . . . is eventually constant

A = A⋆ ⇐⇒ A− A⋆ = 0 because all runs of A⋆ is eventually constant

Determine whether A− A⋆ = 0, by reducing the limitedness of distance automata

Theorem: Safety is decidable for Inf, Sup, LimInf, LimSup, Avg, and DSum automata

31

Deciding Safety

Reduction to language equivalence problem

Classes of Sup, LimInf and LimSup are decidable for equivalence: determine whether A = A⋆

Safe value function

Classes of Inf and DSum automata contain only safe automata: safety is trivial

About LimInfAvg and LimSupAvg

Avg(x1x2 . . .)− Avg(y1y2 . . .) ̸= Avg((x1 − y1)(x2 − y2) . . .)

Equals if y1y2 . . . is eventually constant

A = A⋆ ⇐⇒ A− A⋆ = 0 because all runs of A⋆ is eventually constant

Determine whether A− A⋆ = 0, by reducing the limitedness of distance automata

Theorem: Safety is decidable for Inf, Sup, LimInf, LimSup, Avg, and DSum automata

32

Deciding Safety

Reduction to language equivalence problem

Classes of Sup, LimInf and LimSup are decidable for equivalence: determine whether A = A⋆

Safe value function

Classes of Inf and DSum automata contain only safe automata: safety is trivial

About LimInfAvg and LimSupAvg

Avg(x1x2 . . .)− Avg(y1y2 . . .) ̸= Avg((x1 − y1)(x2 − y2) . . .)

Equals if y1y2 . . . is eventually constant

A = A⋆ ⇐⇒ A− A⋆ = 0 because all runs of A⋆ is eventually constant

Determine whether A− A⋆ = 0, by reducing the limitedness of distance automata

Theorem: Safety is decidable for Inf, Sup, LimInf, LimSup, Avg, and DSum automata

33

Deciding Safety

Reduction to language equivalence problem

Classes of Sup, LimInf and LimSup are decidable for equivalence: determine whether A = A⋆

Safe value function

Classes of Inf and DSum automata contain only safe automata: safety is trivial

About LimInfAvg and LimSupAvg

Avg(x1x2 . . .)− Avg(y1y2 . . .) ̸= Avg((x1 − y1)(x2 − y2) . . .)

Equals if y1y2 . . . is eventually constant

A = A⋆ ⇐⇒ A− A⋆ = 0 because all runs of A⋆ is eventually constant

Determine whether A− A⋆ = 0, by reducing the limitedness of distance automata

Theorem: Safety is decidable for Inf, Sup, LimInf, LimSup, Avg, and DSum automata

34

Boolean Liveness

Intuition

Some wrong hypothesis w ∈ Φ can never be rejected after any finite number of observations

Example: All Requests Granted

Σ = {r, g, t, o}
Φ = every r is eventually followed by some g

35

Boolean Liveness

Intuition

Some wrong hypothesis w ∈ Φ can never be rejected after any finite number of observations

Example: All Requests Granted

Σ = {r, g, t, o}
Φ = every r is eventually followed by some g

w = t r t o t t o g t o o r t t o r t t o g t r · · ·
w ∈ Φ : T . ? · · ·

36

Boolean Liveness

Intuition

Some wrong hypothesis w ∈ Φ can never be rejected after any finite number of observations

Example: All Requests Granted

Σ = {r, g, t, o}
Φ = every r is eventually followed by some g

Definition

A boolean property Φ ⊆ Σω is live when

∀u ∈ Σ∗ : ∃v ∈ Σω : uv ∈ Φ

37

Quantitative Liveness

Intuition

Some wrong hypothesis Φ(w) ≥ x can never be rejected after any finite number of observations

Example: Average Response Time

Σ = {r, g, t, o}
Φavg(w) = average on the occurrences of t between all matching r/g in w

38

Quantitative Liveness

Intuition

Some wrong hypothesis Φ(w) ≥ x can never be rejected after any finite number of observations

Example: Average Response Time

Σ = {r, g, t, o}
Φavg(w) = average on the occurrences of t between all matching r/g in w

w = t r t o t t o g t o o r t t o r t t o g t r · · ·
Φ(w) ≥ 3: T . ? · · ·

39

Quantitative Liveness

Intuition

Some wrong hypothesis Φ(w) ≥ x can never be rejected after any finite number of observations

Example: Average Response Time

Σ = {r, g, t, o}
Φavg(w) = average on the occurrences of t between all matching r/g in w

Definition6

A quantitative property Φ : Σω → D is live when

∀w ∈ Σω : Φ(w) < ⊤ =⇒ ∃x ∈ D : Φ(w) ̸≥ x ∧ ∀u ⊑ w : sup
v∈Σω

Φ(uv) ≥ x

6 Henzinger, Mazzocchi, Saraç. Quantitative Safety and Liveness. 2023
40

Liveness of Quantitative Automata

Threshold Liveness

A quantitative property Φ : Σω → D is threshold-live when

∀x ∈ D : Φ≥x = {w ∈ Σω | Φ(w) ≥ x} is live

Theorem: A property Φ is threshold live iff the set {w ∈ Σω | Φ(w) = ⊤} is dense

Top Liveness

A quantitative property Φ : Σω → D is top-live when Φ⋆(w) = ⊤ for all w ∈ Σω

Theorem: For supremum-closed properties, top-liveness = threshold-liveness = liveness

41

Liveness of Quantitative Automata

Threshold Liveness

A quantitative property Φ : Σω → D is threshold-live when

∀x ∈ D : Φ≥x = {w ∈ Σω | Φ(w) ≥ x} is live

Theorem: A property Φ is threshold live iff the set {w ∈ Σω | Φ(w) = ⊤} is dense

Top Liveness

A quantitative property Φ : Σω → D is top-live when Φ⋆(w) = ⊤ for all w ∈ Σω

Theorem: For supremum-closed properties, top-liveness = threshold-liveness = liveness

42

Liveness of Quantitative Automata

Threshold Liveness

A quantitative property Φ : Σω → D is threshold-live when

∀x ∈ D : Φ≥x = {w ∈ Σω | Φ(w) ≥ x} is live

Theorem: A property Φ is threshold live iff the set {w ∈ Σω | Φ(w) = ⊤} is dense

Top Liveness

A quantitative property Φ : Σω → D is top-live when Φ⋆(w) = ⊤ for all w ∈ Σω

Theorem: For supremum-closed properties, top-liveness = threshold-liveness = liveness

43

Liveness of Quantitative Automata

Threshold Liveness

A quantitative property Φ : Σω → D is threshold-live when

∀x ∈ D : Φ≥x = {w ∈ Σω | Φ(w) ≥ x} is live

Theorem: A property Φ is threshold live iff the set {w ∈ Σω | Φ(w) = ⊤} is dense

Top Liveness

A quantitative property Φ : Σω → D is top-live when Φ⋆(w) = ⊤ for all w ∈ Σω

Theorem: For supremum-closed properties, top-liveness = threshold-liveness = liveness

44

Deciding Liveness

Reduction to constant function problem

All classes are decidable for the constant function problem: determine whether A⋆ = ⊤

About DSum

Every DSum automaton equals its safety closure: determine whether A = ⊤
Determine the highest achievable value of each state

Trim transitions that do not lead to the highest value of the source state

Decide universality of underlying finite state automaton (ignoring weights)

Theorem: Liveness is decidable for Inf, Sup, LimInf, LimSup, Avg, and DSum automata

45

Deciding Liveness

Reduction to constant function problem

All classes are decidable for the constant function problem: determine whether A⋆ = ⊤

About DSum

Every DSum automaton equals its safety closure: determine whether A = ⊤

Determine the highest achievable value of each state

Trim transitions that do not lead to the highest value of the source state

Decide universality of underlying finite state automaton (ignoring weights)

Theorem: Liveness is decidable for Inf, Sup, LimInf, LimSup, Avg, and DSum automata

46

Deciding Liveness

Reduction to constant function problem

All classes are decidable for the constant function problem: determine whether A⋆ = ⊤

About DSum

Every DSum automaton equals its safety closure: determine whether A = ⊤
Determine the highest achievable value of each state

Trim transitions that do not lead to the highest value of the source state

Decide universality of underlying finite state automaton (ignoring weights)

Theorem: Liveness is decidable for Inf, Sup, LimInf, LimSup, Avg, and DSum automata

47

Deciding Liveness

Reduction to constant function problem

All classes are decidable for the constant function problem: determine whether A⋆ = ⊤

About DSum

Every DSum automaton equals its safety closure: determine whether A = ⊤
Determine the highest achievable value of each state

Trim transitions that do not lead to the highest value of the source state

Decide universality of underlying finite state automaton (ignoring weights)

Theorem: Liveness is decidable for Inf, Sup, LimInf, LimSup, Avg, and DSum automata

48

Deciding Liveness

Reduction to constant function problem

All classes are decidable for the constant function problem: determine whether A⋆ = ⊤

About DSum

Every DSum automaton equals its safety closure: determine whether A = ⊤
Determine the highest achievable value of each state

Trim transitions that do not lead to the highest value of the source state

Decide universality of underlying finite state automaton (ignoring weights)

Theorem: Liveness is decidable for Inf, Sup, LimInf, LimSup, Avg, and DSum automata

49

Deciding Liveness

Reduction to constant function problem

All classes are decidable for the constant function problem: determine whether A⋆ = ⊤

About DSum

Every DSum automaton equals its safety closure: determine whether A = ⊤
Determine the highest achievable value of each state

Trim transitions that do not lead to the highest value of the source state

Decide universality of underlying finite state automaton (ignoring weights)

Theorem: Liveness is decidable for Inf, Sup, LimInf, LimSup, Avg, and DSum automata

50

Example of Safety-Liveness Decomposition

Asafe = A⋆

p0 p1

p2q

on:2

on:2

on:2

off:2
off:2

off:2

eco:2

eco:2

eco:2

err:0
err:0

err:0

Σ:0

Alive

p0 p1

p2q

on:2

on:2

on:2

off:0
off:0

off:0

eco:1

eco:1

eco:1

err:2
err:2

err:2

Σ:2

construction for deterministic for Sup, LimInf, and LimSup automata

51

Example of Safety-Liveness Decomposition

Asafe = A⋆

p0

q

on:2

on:2

on:2

off:0
off:0

off:0

eco:1

eco:1

eco:1

err:0
err:0

err:0

Σ:0

on,eco,off:2

err:0

Σ:0

Alive

p0 p1

p2q

on:2

on:2

on:2

off:0
off:0

off:0

eco:1

eco:1

eco:1

err:2
err:2

err:2

Σ:2

A(w) = min{Asafe(w),Alive(w)}

52

Example of Safety-Liveness Decomposition

Asafe = A⋆

p0

q

on:2

on:2

on:2

off:0
off:0

off:0

eco:1

eco:1

eco:1

err:0
err:0

err:0

Σ:0

on,eco,off:2

err:0

Σ:0

Alive

p0 p1

p2

on:2

on:2

on:2

off:0
off:0

off:0

eco:1

eco:1

eco:1

err:2
err:2

err:2

Σ:2

on:2

on:2

on:2

off:0
off:0

off:0

eco:1
err:2

eco:1
err:2

eco:1
err:2

A(w) = min{Asafe(w),Alive(w)}

53

In a nutshell

Inf Sup, LimInf, LimSup LimInfAvg, LimSupAvg DSum

Safety Closure

construct A⋆ O(1) PTime O(1)

Is A constant?

i.e., A = ⊤
PSpace-complete

Is A safe?

i.e., A⋆ = A
O(1) PSpace-complete ExpSpace PSpace-hard O(1)

Is A live?

i.e., A⋆ = ⊤
PSpace-complete

Decomposition

construct Asafe Alive
O(1) PTime if deterministic Open O(1)

Thank you

54

In a nutshell

Inf Sup, LimInf, LimSup LimInfAvg, LimSupAvg DSum

Safety Closure

construct A⋆ O(1) PTime O(1)

Is A constant?

i.e., A = ⊤
PSpace-complete

Is A safe?

i.e., A⋆ = A
O(1) PSpace-complete ExpSpace PSpace-hard O(1)

Is A live?

i.e., A⋆ = ⊤
PSpace-complete

Decomposition

construct Asafe Alive
O(1) PTime if deterministic Open O(1)

Thank you

55

