HIGHLIGHTS 2024 - BORDEAUX FRANCE

Udi Boker¹ Marek Chalupa² Thomas A. Henzinger² Nicolas Mazzocchi²³ N. Ege Sarac²

Safety and

Liveness but

- 1) Reichman University, Israel
- (2) Institute of Science and Technology, Austria
- (3) Slovak University of Technology in Bratislava, Slovakia

This talk is supported by the ERC-2020-AdG 101020093

Quantitative

Boolean Setting

Definition

A Boolean property $\Phi \subseteq \Sigma^{\omega}$ or equivalently $\Phi \colon \Sigma^{\omega} \to \{0,1\}$, is a language

Safety

Requests Not Duplicated

Liveness

All Requests Granted

Definition

A Boolean property $\Phi \subseteq \Sigma^{\omega}$ or equivalently $\Phi \colon \Sigma^{\omega} \to \{0,1\}$, is a language

Safety
Requests Not Duplicated

Liveness

All Requests Granted

Theorem: Decomposition¹

All Boolean property Φ can be expressed by $\Phi = \Phi_{\mathsf{safe}} \cap \Phi_{\mathsf{live}}$

 Φ_{safe} is safe

 Φ_{live} is live

¹ Alpern, Schneider. *Defining liveness*. 1985 Nicolas Mazzocchi

Quantitative Automata

Quantitative Automata Kit

Value function Val

Inf, Sup, LimInf, LimSup LimInfAvg, LimSupAvg, DSum

Quantitative Automata

Quantitative Automata Kit

Value function Val

Inf, Sup, LimInf, LimSup LimInfAvg, LimSupAvg, DSum

Non-determinism

Quantitative Automata

Quantitative Automata Kit

Subset of quantitative properties²

- $\Phi \colon \Sigma^{\omega} \to \mathbb{D}$ where \mathbb{D} is a complete lattice
- totally ordered domain
- finitely many weights
- supremum-closed

Value function Val

Inf, Sup, LimInf, LimSup LimInfAvg, LimSupAvg, DSum

Non-determinism

² Chatterjee, Doyen, Henzinger. *Quantitative Languages*. 2010 Nicolas Mazzocchi

Quantitative Automata Kit

Intuition

Every **wrong** hypothesis $\Phi(w) \ge x$ can always be rejected after a finite number of observations

Quantitative Automata Kit

Intuition

Every **wrong** hypothesis $\Phi(w) \ge x$ can always be rejected after a finite number of observations

Example: Minimal Response Time

- $\textbf{F} \quad \boldsymbol{\Sigma} = \{ \texttt{r},\texttt{g},\texttt{t},\texttt{o} \} \qquad \qquad \texttt{r}: \text{ request, } \texttt{g}: \texttt{grant, } \texttt{t}: \texttt{clock-tick, } \texttt{o}: \texttt{other}$
- $\Phi_{\min}(w) = \text{greatest lower bound on the occurrences of t between all matching r/g in w$

$$w =$$
trtottogtoortto**rttog**tr ··· $\Phi(w) \ge 3$: T....F...

Intuition

Every **wrong** hypothesis $\Phi(w) \ge x$ can always be rejected after a finite number of observations

Example: Minimal Response Time

- $\textbf{F} \quad \boldsymbol{\Sigma} = \{\texttt{r},\texttt{g},\texttt{t},\texttt{o}\} \quad \textbf{r} : \text{ request, } \texttt{g} : \texttt{grant, } \texttt{t} : \texttt{clock-tick, } \texttt{o} : \texttt{other}$
- $\Phi_{\min}(w) = \text{greatest lower bound on the occurrences of t between all matching r/g in w$

Definition³: A quantitative property $\Phi: \Sigma^{\omega} \to \mathbb{D}$ **is safe when**

 $\forall x \in \mathbb{D} : \forall w \in \Sigma^{\omega} : \varPhi(w) \not\geq x \implies \exists u \sqsubseteq w : \sup_{v \in \Sigma^{\omega}} \varPhi(uv) \not\geq x$

³ Henzinger, Mazzocchi, Saraç. *Quantitative Safety and Liveness*. 2023 Nicolas Mazzocchi

Quantitative Automata Kit

Intuition

Every **wrong** hypothesis $\Phi(w) \ge x$ can always be rejected after a finite number of observations

Example: Minimal Response Time

- $\Phi_{\min}(w) = \text{greatest lower bound on the occurrences of t between all matching r/g in w$

Definition³: A quantitative property $\Phi: \Sigma^{\omega} \to \mathbb{D}$ **is safe when**

 $\forall x \in \mathbb{D} : \forall w \in \Sigma^{\omega} : \varPhi(w) \not\geq x \implies \exists u \sqsubseteq w : \sup_{v \in \Sigma^{\omega}} \varPhi(uv) \not\geq x$

Theorem³: Φ is safe $\iff \Phi = \Phi^{\star}$

where Φ^{\star} is the safety closure of Φ

³ Henzinger, Mazzocchi, Saraç. *Quantitative Safety and Liveness*. 2023 Nicolas Mazzocchi

Quantitative Automata Kit

Intuition

Some wrong hypothesis $\Phi(w) \ge x$ can never be rejected after any finite number of observations

Quantitative Automata Kit

Intuition

Some wrong hypothesis $\Phi(w) \ge x$ can never be rejected after any finite number of observations

Example: Average Response Time

• $\Sigma = \{r, g, t, o\}$

+ $\Phi_{avg}(w) =$ average on the occurrences of t between all matching r/g in w

w = trtottogtoorttorttogt $\mathbf{r} \cdots \Phi(w) \ge 3$: T....?

Quantitative Automata Kit

Intuition

Some wrong hypothesis $\Phi(w) \ge x$ can never be rejected after any finite number of observations

Example: Average Response Time

- $\Sigma = \{r, g, t, o\}$
- $\Phi_{avg}(w) = average$ on the occurrences of t between all matching r/g in w

Definition⁴: A quantitative property $\Phi: \Sigma^{\omega} \to \mathbb{D}$ is live when

 $\forall w \in \Sigma^{\omega} : \varPhi(w) < \top \implies \exists x \in \mathbb{D} : \varPhi(w) \not\geq x \land \forall u \sqsubseteq w : \sup_{v \in \Sigma^{\omega}} \varPhi(uv) \geq x$

⁴ Henzinger, Mazzocchi, Saraç. *Quantitative Safety and Liveness*. 2023 Nicolas Mazzocchi

Quantitative Automata Kit

Intuition

Some wrong hypothesis $\Phi(w) \ge x$ can never be rejected after any finite number of observations

Example: Average Response Time

- $\Sigma = \{r, g, t, o\}$
- $\Phi_{avg}(w) = average$ on the occurrences of t between all matching r/g in w

Definition⁴: A quantitative property $\Phi: \Sigma^{\omega} \to \mathbb{D}$ is live when

 $\forall w \in \Sigma^{\omega} : \varPhi(w) < \top \implies \exists x \in \mathbb{D} : \varPhi(w) \not\geq x \land \forall u \sqsubseteq w : \sup_{v \in \Sigma^{\omega}} \varPhi(uv) \geq x$

Theorem⁴: Φ is live $\iff \forall w : \Phi^{\star}(w) = \top$

where Φ is supremum closed

⁴ Henzinger, Mazzocchi, Saraç. *Quantitative Safety and Liveness*. 2023 Nicolas Mazzocchi

Classes Inf, Sup, LimInf, LimSup

Safety: $A = A^*$

• Equivalence is decidable

Liveness: $A^* = \top$

Classes Inf, Sup, LimInf, LimSup

Safety: $A = A^*$

• Equivalence is decidable

Class DSum

Safety: alway true

Liveness: $A = \top$

Liveness: $A^* = T$

- > For each state, determine the transition leading to highest achievable value
- Decide universality of the underlying finite state automaton (all state accepting)

Classes Inf, Sup, LimInf, LimSup

Safety: $A = A^*$

• Equivalence is decidable

Class DSum

Safety: alway true

Liveness: $A^{\star} = \top$

Liveness: $A = \top$

- > For each state, determine the transition leading to highest achievable value
- Decide universality of the underlying finite state automaton (all state accepting)

Classes LimInfAvg and LimSupAvg

• $A = B \iff [A - B] = 0$ holds if all runs of B are **eventually constant** as for A^* and \top $C \le 0$ is PTIME^5 $C \ge 0$ is undecidable⁶ C = 0 is PSPACE^7

Classes Inf, Sup, LimInf, LimSup

Safety: $A = A^*$

• Equivalence is decidable

Class DSum

Safety: alway true

Liveness: $A^* = \top$

Liveness: $A = \top$

- > For each state, determine the transition leading to highest achievable value
- Decide universality of the underlying finite state automaton (all state accepting)

Classes LimInfAvg and LimSupAvg

• $A = B \iff [A - B] = 0$ holds if all runs of B are eventually constant as for A^* and \top $C \le 0$ is $PTIME^5$ $C \ge 0$ is undecidable⁶ C = 0 is $PSPACE^7$

⁵ Chatterjee, Doyen, Henzinger. *Quantitative Languages*. 2010

Nicolas Mazzocchi

Classes Inf, Sup, LimInf, LimSup

Safety: $A = A^*$

• Equivalence is decidable

Class DSum

Safety: alway true

Liveness: $A^* = \top$

Liveness: $A = \top$

19

- For each state, determine the transition leading to highest achievable value
- Decide universality of the underlying finite state automaton (all state accepting)

Classes LimInfAvg and LimSupAvg

• $A = B \iff [A - B] = 0$ holds if all runs of B are eventually constant as for A^* and \top $C \le 0$ is $PTIME^5$ $C \ge 0$ is undecidable⁶ C = 0 is $PSPACE^7$

⁶ Degorre, Doyen, Gentilini, Raskin, Torunczyk. *Energy and MP Games with Imperfect Information*. 2010 Nicolas Mazzocchi

Classes Inf, Sup, LimInf, LimSup

Safety: $A = A^*$

• Equivalence is decidable

Class DSum

Safety: alway true

Liveness: $A^* = \top$

Liveness: $A = \top$

- > For each state, determine the transition leading to highest achievable value
- Decide universality of the underlying finite state automaton (all state accepting)

Classes LimInfAvg and LimSupAvg

• $A = B \iff [A - B] = 0$ holds if all runs of B are eventually constant as for A^* and \top $C \le 0$ is $PTIME^5$ $C \ge 0$ is undecidable⁶ C = 0 is $PSPACE^7$

⁷ Boker, Henzinger, Mazzocchi, Saraç. *Safety and Liveness of Quantitative Automata*. 2023 Nicolas Mazzocchi

In a nutshell

Quantitative Automata Kit

	Inf	Sup *, LimInf, LimSup	LimInfAvg, LimSupAvg	DSum			
Safety Closure	O(1)	PTIME		O(1)			
construct A^*							
Is A constant?		DCDA CD complete					
e.g., $A = 0$	r SPACE-complete						
Is A safe?	O(1)	PSpace -complete	$ExpSpace \setminus PSpace-hard$	O(1)			
i.e., $A^{\star} = A$							
Is A live?		DCDA CE complete					
i.e., $A^{\star} = \top$	r SPACE-complete						
Decomposition	O(1)	PT IME keeps determinism	PTIME losses determinism	O(1)			
$A = \min A_{\text{safe}} A_{\text{live}}$							

 * For \mathbf{Sup} we provide a Inf-Sup decomposition since Sup-Sup is infeasible in general $_{\text{Nicolas Mazzocchi}}$

In a nutshell

Quantitative Automata Kit

	Inf	Sup *, LimInf, LimSup	LimInfAvg, LimSupAvg	DSum			
Safety Closure	<i>O</i> (1)	PTIME		O(1)			
construct A^*				O(1)			
Is A constant?		DSDAGE complete					
e.g., $A = 0$	I SPACE-complete						
Is A safe?	O(1)	PSpace -complete	$ExpSpace \setminus PSpace\text{-hard}$	O(1)			
i.e., $A^{\star} = A$							
Is A live?		DSDAGE complete					
i.e., $A^{\star} = \top$	r SPACE-complete						
Decomposition	O(1)	DTIME keens determinism	DTD (D lassa dataminian	O(1)			
$A = \min A_{safe} A_{live}$	0(1)	1 1 IME keeps determinism	F 11ME losses determinism	0(1)			

Thank you

 $\ast\,$ For ${\bf Sup}$ we provide a Inf-Sup decomposition since Sup-Sup is infeasible in general $_{\rm Nicolas\,Mazzocchi}$