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Supervisé par Emmanuel Filiot et Jean-François Raskin
Dans l’équipe Formal Methods and Verificiation à l’Université Libre de Bruxelles
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Le contexte général

Ce stage traite l’analyse quantitative de formalismes permettant de définir des fonctions d’un
mot vers une valeur. L’étude s’articule autour de deux axes principaux. D’une part, on considère des
expressions dont les variables sont évaluées par des weighted automata1. D’autre part, on s’intéresse
à la décision la lipschitz robustesse i.e. pour deux mots d’input relativement proches, on souhaiterait
vérifier si leurs images par une fonction sont linéairement proches. La connexion entre ces axes, réside
dans le fait que le modèle des expressions soit un moyen de rendre le problème de lipschitz robustesse
décidable. Les questions de robustesse sont depuis longtemps un sujet très actif dans la communauté de
vérification, on citera par exemple [32, 20, 21, 10] qui considère principalement la lipschitz robustesse
dans le cadres des transductions et des systèmes temporisés.

Le problème étudié

Les modèles que nous étudions sont décomposés en un valuateur et un combinateur. Le valua-
teur, a pour but d’évaluer les variables qui dépendent de l’environnement (le mot d’input) et donc
potentiellement bruitées. Le combinateur reçoit les variables évaluées par le valuateur et les combines
afin de retourner une valeur finale unique. Cette décomposition est en fait une généralisation de la
notion d’expression à partir de variables évaluées par des weighted automata déterministes, qui a été
introduite dans [6] pour les infinis.

Les problèmes que nous étudions sont la vacuité, l’universalité, la comparaison (une variante de
l’inclusion quantitative) et la lipschitz robustesse de nos modèles. Les précédents résultats analysent
les problèmes de décisions quantitatif classique (vacuité, l’universalité, inclusion, équivalence) pour
les Mean-Payoff Expressions et démontre leur décidabilités [6, 36]. Le sujet consiste à définir des
variantes aux Mean-Payoff Expressions dans le cadre de mots finis en considèrent différent valuateurs
et combinateurs. Par ailleurs, on souhaiterais décrire une preuve de décidabilité directe (comparable
à la construction de Thompson pour les expressions régulière [35]). Et enfin, il s’agit de présenter une
analyse fine des complexités, en fixant des paramètres ou bien en codant les valeurs en unaire.

La contribution proposée

L’issue de ce stage propose des modèles dont tous les problèmes de décision quantitatif classique
sont dans PSpace. Les valuateurs ont été étendu au weighted automata fonctionnel (contraiement au
weighted automata déterministe de [6, 36]), rendant l’expressivité des modèles comparable au weighted
automata k-valued (strictement plus expressif). Nous présentons aussi deux caractérisations générales
permettant d’obtenir la décidabilité de la lipschitz robustesse et celle des axiomes de distance. Les
résultats de complexité sont optimaux et considère les cas suivant.

1En français automate à multiplicité mais je préfère garder le terme utilisé dans le rapport.
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• Valuateur réalisé soit par un unique au-
tomate labélisé par des vecteurs soit
comme un produit d’automates.

• Combinateur exprimé par une expres-
sion ou par une formule existentielle de
Presburger.

• Encodage des multiplicités (et du threshold) en
unaire ou en binaire.

• Généralisation du problème d’inclusion quanti-
tatif au problème de comparaison afin de ne
pas dépendre de l’inclusion des domaines (étant
PSpace-Complete).

En ce qui concerne l’historique de la démarche, j’ai tout d’abord donné une preuve que le problème
de lipschitz robustesse est en général indécidable pour des fonctions réalisées par des weighted auto-
mata. De plus, j’ai montré qu’il est décidable de savoir lorsque nos fonction décrivent une distance,
en généralisant à une classe défini par des axiomes plus proche de la théorie des automates. Ceci
justifie donc l’utilisation des expressions dans la résolution des problèmes de lipschitz robustesse. En-
suite, mes encadrants m’ont fait découvrir le modèle des reversal bounded counter machines2 qui
permet de présenter une preuve directe que l’inclusion quantitative de nos modèles sont dans PSpace.
Puis, les première preuve de NP-Hardness on vu le jour, donnant une motivation à l’extension des
combinateurs exprimé par une expression, à une formule existentielle de Presburger afin obtenir la
NP-completeness. Finalement, l’étude des complexités a été raffinée au cas d’un encodage unaire.

Les arguments en faveur de sa validité

Les complexités démontrées dans le rapport sont en accord avec les résultats existant [36] mais dans
le cadre des mots finis. En outre, la totalité des résultats repose sur d’anciens théorèmes éprouvés. Le
Lemme d’Oscar Ibarra [17] pour les counter machines date de 1981. Le théorème de Bruno Sarpellini
[33] pour la satisfaisabilité des formules existentielle de Presburger date de 1984. Et de même pour
tous les problèmes réduit, Boolean Emptiness for intersection of regular languages problem [25] 1977,
Set Partition [23] 1982, 3-Partition [16] 1975 et NFA membership [22] 1975.

Le bilan et les perspectives

Les résultats de complexité sont succinctement présentés dans la table en Annexe C (dernière
page). Notre caractérisation de la décidabilité de la lipschitz robustesse s’applique à toutes les fonctions
de la table.

Une analyse similaire pourrait être entreprise dans le cas où les valuateurs sont réalisés par des
discounted sum automata ou des ratio automata. Nous pourrions étudier la décidabilité de jeux dont la
condition d’acceptation serait exprimé dans l’arithmétique de Presburger. On pourrait aussi envisager
que les combinateurs ai une expressivité entendu à quelque chose de plus proche d’un langage de
programmation en incluant par exemple les branchements if, then, else. Du coté de la robustesse
beaucoup de travaux existent déjà mais ne sont pas couplés avec ce modèle. On pourrais s’intéresser
à la synthèse de systèmes robustes à partir d’une spécification logique.

Un mot sur le stage

Durant le premier mois de mon stage j’ai travaillé sur l’adaptation du GAP algorithme du papier
[11] de Thomas Colcombet et Laure Daviaud pour des fonctions réalisées par des mean-payoff weighted
automata sur des mots infinis réguliés. Cette étude m’a conduit vers des résultats existants sur les jeux
d’énergie à informations imparfaites en particulier, je pouvais utiliser certain théorèmes du papier [9].
Néanmoins, la question étant plus difficile qu’elle n’y apparaissait, mes encadrants m’ont alors redirigé
vers le domaine de la robustesse. Notez bien que les questions posé sont les même (principalement
l’inclusion quantitative) seul change la classe des weighted automata.

Ce stage de recherche, en partie financé par le programme de mobilité ERAMUS, est réalisé à
titre obligatoire dans le cadre du Master Parisien de Recherche en Informatique (MPRI). Mon travail
sera évalué par Pierre Senellart, Hubert Comon-Lundh et Sophie Laplante (présidente-rapportrice)
au cours d’une soutenance. La préférence d’une pratique de langage étranger au lors d’une mobilité
Européenne, en vue d’une publication future et surtout la demande de mes encadrants sont autant de
raisons qui justifie le choix d’une rédaction en anglais. Je souhaite d’ailleurs leur adresser mes plus
chaleureux remerciement pour l’aide, le temps qu’il m’ont consacré ainsi que leur pédagogie. Cher
lecteur, bonne lecture.

2En français machines à compteur avec inversement de tendance borné mais je préfère garder le terme utilisé dans le
rapport.
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Abstract

We propose to study a computational model inspired by Mean-Payoff Expressions
[6], which separates the valuations of the environmental variables (potentially noisy)
and the program, also called combiner, that compute the final result. In this report,
the inputs will be represented by a finite word. Environmental variables are evaluated
by a functional sum weighted automaton and the program is written either as an
expression using operations, min, max, plus, minus, or as an existential Presburger
formula. We shown that all classical quantitative decision problems are in PSpace and
we refine many complexity cases. The valuations can be given by a single automaton
with vectors or as a product, encoding of weights can be binary or unary. Finally, we
study the decidability of lipschitz robustness for such model, and we present a general
characterization for it decidability.
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1 Introduction

Nowadays, most computational embedded systems for critical applications use a reactive system. These imple-
mentations maintain a continuous interaction with the environment in which they operate. But, any flaw in such
a critical computation can have catastrophic consequences. Yet, they exhibit several features that make them
difficult to design correctly, like resources and real-time constraints, concurrency, parallelism and so on. To ensure
the design of reactive computer systems that are dependable, safe and efficient, researchers and industry have
advocated the use of so-called formal methods, that rely on mathematical models to express precisely and analyze
the behaviors of those systems.

In 1950, Stephen Cole Kleene in [24], and Michael Oser Rabin & Dana Scott in [29] initiated Boolean for-
mal methods elegantly and efficiently supported by automata theoretic methods. So, in the traditional approach,
a system is either correct when it transforms all allowed input streams of the environment into input-output
streams accepted by the specification, or incorrect otherwise. However, when considering reactive systems, it is
often desirable to adopt a more quantitative approach in which the performance of the system (and not only its
correctness) can be modeled and analyzed.

The idea of Weighted Automata (WA for short), is to associate each word to a value from a computation
in its semiring, for example the tropical semiring 〈N ∪ {∞},min,+,∞, 0〉. In addition, all classical problems
(emptiness, universality, inclusion, equivalence) can be extended to this framework [7]. WA were introduced in
1961 by Schützenberger in [34], and generalized in [14]. One may refer to books [13] and [31] for a complete
overview. Later, several expressiveness variants have been introduced for trees [2], alterning automata [8], timed
automata [5], lattice automata [19]. Even Büchi’s and Elgot’s fundamental theorems were extended with a weighted
version of MSO logics in [12]. Nevertheless, in 1994 Krob reduced Hilbert’s 10th problem (solving a diophantine
equation) to proves the undecidability of the universality problem for the tropical semiring with domain Z∪{∞}.
This implies undecidability of inclusion. An alternative proof by reducing from the halting problem of a 2-counter
machine is given in [1].

Thus, Quantitative Expressions have been defined to dodge undecidability while keeping a powerful expres-
siveness. The computation of expression setting is separated in a valuation of variables during input word reading
and, a combiner which uses them to construct the final result. The first quantitative expressions considered,
Mean-Payoff Expressions, were introduced in [6] with valuations realized by a deterministic Mean-Payoff WA and
combiner operations min, max, minus, plus. The proof used, to show that the quantitative decision problems
are decidable for these expressions, presents a geometric approach and yields a complexity 4ExpTime. The re-
sult has been improved in [36] with a new proof based on cycle analysis in the automata, the problem is finally
PSpace-Complete.

In the report we consider valuations performed by functional Sum-WA in Z over finite words. The importance
of handling functional automata rather than deterministic ones is because their expressiveness is comparable to
k-valued weighted automata (a k-valued weighted automaton can be decomposed in to a k unions of functional
weighted automata, unions of deterministic ones are strictly less expressive [39]). Furthermore, we solve slightly
different problems : Classical inclusion problem (respectively equivalence) check the inclusion of the domain
(respectively equivalence) which is PSpace-Complete [27]. But this hardness is not satisfactory in the sense
that this is not the heart of the problem. So, in the next section, we define comparison problems which does not
depend on this inclusion (respectively equivalence). Section 3 shows a simpler proof of the complexity result stated
above and some hardness results. Section 4 extends the expressiveness of the combiner to existential Presburger
logic. Finally, Section 5 uses expressions in the lipschitz robustness problem defined in [32] and [20]. A function is
called K-lipschitz robust if the perturbation in its output is at most K times the perturbation in its input, where
the input and output perturbation is defined by a distance. Obviously, in general the question is undecidable
for weighted automata but, when the function and distance are performed by our valuation and combiner, the
problem becomes decidable. Lastly, we present an application of the lipschitz robustness problem inspired from
[4, 3].

2 Preliminaries

In this section, we introduce the main models used in this work, functional Sum-WA and reversal bounded counter
machine. WA, labeled in Zk, will be used to define valuations and reversal bounded counter machine will be the
model to which all our valuations and combiners can be translated. We also present a formalization of the problems
that we will consider throughout the report.
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Definition : Language Theory Notations

An alphabet Σ is a non-empty finite set, its elements are called letters, characters or symbols. The empty letter is
denoted by ε and the alphabet Σ augmented with ε will be Σε. More generally, the alphabet Σ augmented with
a fresh symbol # will be Σ#. In this document, we note alphabets Σ,Γ,V and for letters we use a, b, α, β and σ.

A word on an alphabet Σ is a (potentially empty) sequence of symbols belonging to Σ. The empty word is
denoted by ε (like empty letter). The length of a word w is the number of symbols that compose it, noted |w| and
|w|a for the occurrences number of some letter a ∈ Σ. In particular, |ε| = 0. Given a word w, for each i ∈ [1..|w|]
the symbol at position i in w can be written w[i]. In this document, we consider that words are finite, and we
note them u, v, w. A set of words on an alphabet is called a language. The set of all words over an alphabet Σ is
denoted by Σ∗ and the set of regular languages over Σ is REGΣ.

Definition : Weighted Automaton (over Z)

A Zk-WA over a semiring (Zk,�,�, 0, 1) is a tuple 〈Σ, Q, s, F,∆, γ〉 where :

• Σ an alphabet

• Q a finite set of states

• s ∈ Q an initial state

• F ⊆ Q a set of accepting states

• ∆ : Q× Σ×Q a transition relation

• γ : ∆→ Zk a weight function

The tuple (p, a, q) ∈ ∆ is a transition from state p to q which read the
input letter a with γ(p, a, q) the weight vector. Such transition in an

automaton A can be noted, p
a | γ(p,a,q)−−−−−−→A q. Also, we will talk about

the maximal weight `, other words for saying ` := max{|γ(p, a, q)[j]| :
(p, a, q) ∈ ∆ ∧ j ∈ [1..k]} ∈ Z.

A path ρ over w := a1 . . . an ∈ Σ∗ is a sequence ρ := q1a1 . . . anqn+1

where (qj , aj , qj+1) ∈ ∆ for each j ∈ [1..n]. The cost of a path is defined
by Cost(q1a1 . . . anqn+1) :=

(
�j∈[1..n]γ(qj , aj , qj+1)

)
� 1. A path is ac-

cepting if it starts in the initial state s and ends in some state of F , we
note Path(w) the set of accepting paths over w.

An execution (or run) over w adds the cost of all accepting paths over w, [[A]](w) :=
(
�ρ∈Path(w)Cost(ρ)

)
� 0.

Thus the semantics of A a Zk-WA is the partial function [[A]] : Σ∗ → Zk. We denote LA := dom([[A]]), the language
of A and the size of A is defined as |A| := |Q|+ |∆|+ k × log2(`).

The most considered type of WA in the literature are tropical Zk-WA where � := + and � := min. In the
remainder, we mainly use a restriction of tropical automata, that for each word w, all its accepting paths have
the same cost and � is idempotent, named functional Zk-SumWA. This property can be decided in PTime [15].

Definition : Product of ZkSum-WA

Let A := 〈Σ, QA, sA, FA,∆A, γA〉 be a ZnSum-WA and B := 〈Σ, QB, sB, FB,∆B, γB〉 be a Zm-WA. We define the
Zn+mSum-WA product A× B := 〈Σ, QA ×QB, (sA, sB), FA × FB,∆, γ〉 where ∆ and γ as follows.

p1
a | v1−−−→A q1 ∧ p2

a | v2−−−→B q2 ⇒ (p1, p2)
a | ( v1v2 )
−−−−−→A×B (q1, q2)

Definition : Counter Machine

A k-counter machine is a tuple 〈Σ, X,Q, s, F,∆, λ〉 where :

• Σ an alphabet

• X a set of counters interpreted in N such that |X| = k

• Q a finite set of states

• s ∈ Q an initial state

• F ⊆ Q a set of accepting states

• ∆ : Q× Σε × {decr,nop, incr}k ×Q a transition relation

• λ : ∆→ {equal,greater, top}k a zero guards

with

decr := x 7→ x− 1

nop := x 7→ x

incr := x 7→ x+ 1

zero := x 7→ x = 0

top := x 7→ >

greater := x 7→ x > 0

The tuple (p, σ, τ, q) ∈ ∆ is a transition from state p to q which reads the input letter σ (possibly ε) and applies
counter transformations vector τ such that

∑k
x=1(τ [x] 6= nop) ≤ 1, i.e τ changes at most one counter. Since

counters are valued over N, the function λ must satisfy ∀x ∈ [1..k]. (τ [x] = decr) =⇒ (λ(p, σ, τ, q)[i] =
greater) i.e λ hardcodes the fact that counters are always positive. Such transition in a machineM can be noted,
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p
σ,λ(p,a,τ,q) | τ−−−−−−−−→M q. In figures, we can hide top and nop, write conjunctions and disjunctions in the zero guards

or transform a constant number of counters, see figure 2.1 for further explanations.
A path ρ over w := σ1 . . . σn ∈ Σ∗ε is a sequence ρ := q1σ1τ1 . . . σnτnqn+1 where (qj , σj , τj , qj+1) ∈ ∆ for each

j ∈ [1..n]. A path is accepting if it starts in the initial state s and ends in some state of F , we note Path(w) the
set of accepting paths over w. Counter transformations and zero guards can be extended to a path by induction
on its length by the following function which takes a counter valuation ν.

τρ := ν 7→

{
ν if ρ = q

[τ q′ρ′ ◦ τ ](ν) if ρ = qστq′ρ′

If the path has no transition, the counter transformations along
path are the identity function and zero guards along path are obviously
always satisfied. Otherwise, the counter transformations along a path
are the ordered memberwise composition of counter transformations.

The zero guards along a path are the memberwise
conjunction between zero guards of the first tran-
sition and zero guards along to the remaining path
after applying the first counter transformation.

λρ := ν 7→

{
> if ρ = q

λ(q, σ, τ, q′)(ν) ∧ [λq′ρ′ ◦ τ ](ν) if ρ = qστq′ρ′

A run over w and for an initial counter valuation ν, is an accepting path ρ over w if ∀x ∈ [1..k]. λρ(ν)[x] = true,
i.e ν allows to satisfy all zero guards along path. Thus, the semantics of a counter machineM is the partial function
defined by [[M]](w, ν) := {τρ(ν) : ρ ∈ Path(w) ∧ ∀x ∈ [1..k]. λρ(ν)[x]}. For an initial counter valuation ν, we
call the language of M the set LνM := {w : [[M]](w, ν) 6= ∅} and we note 0 the zero counter valuation. We say
a machine M has r reversals to describe the fact that each counter of M changes from a increasing mode to
decreasing mode and vice-versa at most r times.

Example

In the figure beside, labels of the one reversal counter
machine use lots of macro to make a more understand-
able figure. The green bubble, each disjunction member
should make one edge associated with top on the other
guards. There are not illegal operations, but the red
bubbles labels should be 〈a, (top, top) | (incr,nop)〉 &
〈b, (top, top) | (nop, incr)〉 for bottom one, and for the
top one 〈ε, (equal, equal) | (not,nop)〉. Finally, there
are two operations the blue bubble, the corresponding
state would be split into two linked with ε-transitions.

a |x1 + 1
b |x2 + 1

ε

ε, x1 > 0 ∧ x2 > 0
x1 − 1, x2 − 1

ε, x1 = 0 ∧ x2 = 0

ε, x
1 > 0 ∨ x

2 > 0

figure 2.1 : L0
M := {w : |w|a = |w|b}

Definition : Counter Machine Combiners

Given a k1-counter machine M1 := 〈Σ, X1, Q1, s1, F1,∆1〉 with n1 states, r1 reversals and a k2-counter machine
M2 := 〈Σ, X2, Q2, s2, F2,∆2〉 with n2 states, r2 reversals, we want to combine their computations into a new one
according to several operations.

Sequential (concatenation) : NotedM1 ·M2, the concatenation is a k-counters machineM := 〈Σ, X1∪X2, Q1∪
Q2, s1, F2,∆〉 with max{k1, k2} ≤ k ≤ k1 + k2 (according to the number of counter used in both machines),
n := O(n1 +n2) states and r reversals such that max{r1, r2} ≤ r ≤ r1 + r2. The relation ∆ is defined by the
union of ∆1, ∆2 and ε-transitions without effect on counters, from each states of F1 to s2. The semantics
are as follows.

∀ν : X → Z. LνM = LνM1
·LνM2

∧∀w ∈ Σ∗. ∃u, v ∈ Σ∗. [[M]](w, ν)[x] :=


[[M1]](u, ν)[x] if x ∈ X1 \X2

[[M2]](v, ν)[x] if x ∈ X2 \X1

[[M2]] (v, [[M1]](u, ν)) if x ∈ X1 ∩X2

Non-deterministic (union) : Noted M1 ||M2, the union is a k-counter machine M := 〈Σ, X1 ]X2, Q1 ∪Q2 ∪
{q}, q, F1 ∪ F2,∆〉 with k = k1 + k2 (separate counters)6 n := O(n1 + n2) states and r reversals such that
r := max{r1, r2}. The relation ∆ is defined by the union of ∆1, ∆2 and two ε-transitions without effect on
counters, from the new initial state q to s1 and to s2. The semantics are as follows.

∀ν : X → Z. LνM := LνM1
∪ LνM2

∧ ∀w ∈ Σ∗. [[M]](w, ν)[x] :=

{
[[M1]](w, ν)[x] if x ∈ X1

[[M2]](w, ν)[x] if x ∈ X2

6Union can be defined without this restriction but we don’t need it
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Definition : Decision Problems

Given two finitely presented functions f, g : Σ∗ → Z, a threshold c ∈ Z, �∈ {≤, <,=, >,≥} and �∈ {=, >,≥}.

Zero-Emptiness : ∃u ∈ dom(f). f(u) � 0

Emptiness : ∃u ∈ dom(f). f(u) � c

Universality : ∀u ∈ dom(f). f(u) � c

Comparison : ∀u ∈ dom(f) ∩ dom(g). f(u) � g(u)

3 Quantitative Expressions

Initially introduced in [6] and [36], quantitative expressions have been introduced as a terms whose can be constants
are deterministic WA. The scission between automata and operations (that we call respectively valuations and
combiners) is the result of our generalization. In the following, functional ZkSum-WA will be our valuations in two
different ways : There can be a single automaton with vector on its transitions as we have defined in preliminaries
or, one automaton for each variable (given as a product). Obviously, if we actually compute the product, we
obtain the single automaton, but it can result in an exponential blow up. For this reason, our complexity proofs
will distinguish these two presentations. Remark, if the number of variables is fixed, the product can be done for
free.

In this section, we show an alternative proof to that in [36], of the fact that all decision problems for sum
automata expressions over finite word given as a product are in PSpace. The idea is to translate the valuation
and the combiner to a reversal bounded counter machine like the Thompson construction for regular expressions
[35]. We also present several hardness results. The problem is PSpace-Hard if valuation is given as a product
(same straightforward proof than [36]) and NP-Hard otherwise (which separates binary and unary cases).

Definition : Expression

An expression over the set of variables X is a term generated by the following grammar where variables are
interpreted in Z.

E := 0 | 1 | x ∈ X | − E | min{E1, E2} | max{E1, E2} | E1 + E2

An expression is associated with its semantic tree (described beside for E :=
min{−x1, 1 + x2}). We define the language T (E) ⊆ {α, β}∗ to describe all
corrects path in the semantic tree of E. Let’s note Eu to describe the sub-
expression at position u ∈ T (E). The proposition Var(Eu) holds if Eu is a
variable. The semantics of an expression E, is [[E]] : (X → Z)→ Z that takes a
valuation and return a value in Z. The size of an expression E, is |E| := |T (E)|.

min

− x1
α

α

+

1α

x2β

β

ε

figure 3.1 : Semantic tree

3.1 Translate valuations and expressions to reversal bounded counter machine

Most of the considered decision problems will be reduced to emptiness of reversal bounded counter machines.
The interest of such a translation is the use of a very strong complexity result which : given a reversal bounded
counter machine, one can compute a threshold for the smallest number of transitions leading to accepting. Then,
we show two lemmas to translate respectively functional ZkSum-WA and expressions into a reversal bounded
counter machine.

Lemma 3.1

Let A be a functional ZkSum-WA with maximum weight ` and m transitions. One can construct a 2k-counter
machine M whose X := {x+

1 , x
−
1 . . . x

+
k , x

−
k } its counter set (all are increasing only) and with O (mk`) transitions

such that :

LA = L0
M ∧ ∀u ∈ LA. ∀j ∈ [1..k]. [[A]](u)[j] = [[M]](u,0)[x+

j ]− [[M]](u,0)[x−j ]

Proof

Recall that counters of M are valued in N. Thus, we will encode the jth value of A by the couple (x+
j , x

−
j )

representative of fictive counter xj . So x+
j represents the increments applied to the fictive counter while x−j

represents the decrements. Moreover, we wish that M have the least possible reversals (in particular 0). So even
if the counters of M were interpreted in Z, this separation is necessary.
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The construction of M is easy, for any p
a|c1,...,ck−−−−−−→A q we create the pseudo-transition p

a, | (c1+1,...,ck+1)−−−−−−−−−−−→M q
(see technical details in Appendix B). Furthermore, we can checks that the real number of created transition is
O (km`) and all are incremental.

Since A is functional, for any fixed word u ∈ LA, the cost of a run over u is exactly the cost of any accepting
path over u. And by construction, there is a bijection between the accepting paths in A and accepting paths in
M. Therefore, all runs of M over u lead to the same counter valuation and then [[M]] is a function. We conclude
by saying that the zero valuation is the neutral valuation for the sum operator.

Lemma 3.2

Let E be an expression over X. One can construct a 2|E|-counter machine M whose X :=
⋃
u∈T (E){x+

u , x
−
u } its

counter set (one reversal, increasing-decreasing) and with O (|E|) transitions such that :

∀ν : X → Z. JEK(ν) = JMK(ε, ν̂)[x+
ε ]− JMK(ε, ν̂)[x−ε ]

where ∀u ∈ T (E). ν̂(x+
u ) :=

{
ν(Eu) if Var(Eu) ∧ 0 < ν(Eu)

0 otherwise
ν̂(x−u ) :=

{
−ν(Eu) if Var(Eu) ∧ ν(Eu) < 0

0 otherwise

Proof

Recall that the counters of M are valued in N while variables in expressions can be valued by negative numbers.
Thus we will encode the result of each operator by the couple (x+

u , x
−
u ) representative of the fictive counter xu

where u ∈ T (E). So x+
u represent the increments applied to the respective fictive counter while x−u represent the

decrements. All fictive counters must respect some normal form : one counter of the couple must be zero. We show
the construction by structural induction on E. Let us note Eu to
describe the sub-expression at position u ∈ T (E) in the semantic
tree and we call root couple the counter couple associated to the
root operation.

Constants : Case Eu := C where C ∈ {0, 1}. Obvious.

Variable : Case Eu := x. We simply normalizes the couple
(x−, x+), see figure 3.2.

Minus : Case Eu := −Euα. By induction hypothesis Muα over
Xuα :=

⋃
u∈T (Euα){x+, x−} denotes Euα with the root cou-

ple (x−uα, x
+
uα). After the computation of Muα, we proceed

to the assignments x+
u := x−uα and x−u := x+

uα realized by
Mminus(xuα, xu), see figure 3.3. To do this, we construct
Mu :=Muα ·Mminus(xuα, xu). Note that this transformation
preserves counter normalization.

x− = 0 ∨ x+ = 0

x− > 0 ∧ x+ > 0
x− − 1, x+ − 1

figure 3.2 : Mnorm(x)

x− = 0

x− > 0
x− − 1, z− + 1

x+ = 0

x+ > 0
x+ − 1, z+ + 1

figure 3.3 : Mminus(x, z) = z := −x

Sum : Case Eu := Euα + Euβ. By induction hypothesis Muα over Xuα :=
⋃
u∈T (Euα){x+, x−} and Muβ over

Xuβ :=
⋃
u∈T (Euβ){x+, x−} denotes respectively Euα with the root couple (x−uα, x

+
uα) and Euβ with the root

couple (x−uβ, x
+
uβ). After the computation ofMuα andMuβ, we proceed to the assignments x+

u := x+
uα +x+

uβ

and x−u := x−uα + x−uβ realized by Msum(xuα, xuβ, xu), see figure 3.4. To do this, we construct Mu :=
Muα · Muβ · Msum(xuα, xuβ, xu) · Mnorm(xu). Note that Msum does not keep counter normalization, then
the norm gadget will be always concatenate after the sum gadget.

x− = 0

x− > 0
x− − 1, z− + 1

x+ = 0

x+ > 0
x+ − 1, z+ + 1

y− = 0

y− > 0
y− − 1, z− + 1

y+ = 0

y+ > 0
y+ − 1, z+ + 1

figure 3.4 : Msum(x, y, z) = z := x+ y

Minimum / Maximum : Case Eu := Euα ./ Euβ where ./∈ {min,max}. By induction hypothesis Muα over

Xuα :=
⋃
u∈T (Euα){x+, x−} and Muβ over Xuβ :=

⋃
u∈T (Euβ){x+, x−} denotes recpectively Euα with the
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root couple (x−uα, x
+
uα) and Euβ with the root couple (x−uβ, x

+
uβ). After the computation of Muα and Muβ

and by counter normalization, for all couple one counter is zero and then we can separate the four sign
cases to select the interesting parameter, see figure 3.5 and figure 3.6. To do this, we construct Mu :=
Muα · Muβ · M./(xuα, xuβ, xu). Note that this transformation preserves counter normalization.

In figure 3.5, one can take branching east or west only if both fictive counters x and y have an opposite
sign. In this case, we just copy the negative one in z. The machine can take the south branch, only if both
fictive counters x and y are positives. In this case, we decrease both simultaneously and increase z until one
of them becomes zero. In the last case, we increase both simultaneously and decrease z until one of them
becomes zero, then we continue in the first case. The figure 3.6 work with a symmetric idea.

x+ = 0 ∧ y− = 0

x− = 0 ∧ y+ = 0

x+ = 0 ∧ y+ = 0

x− = 0 ∧ y− = 0

x− = 0

x− > 0
x− − 1
z− + 1

y− = 0

y− > 0
y− − 1
z− + 1

x− > 0 ∧ y− > 0
x− − 1, y− − 1, z− + 1

x+ = 0y+ = 0

x+ > 0 ∧ y+ > 0
x+ − 1, y+ − 1, z+ + 1

y− = 0x− = 0

figure 3.5 : Mmin(x, y, z) = z := min{x, y}

x+ = 0 ∧ y− = 0

x− = 0 ∧ y+ = 0

x+ = 0 ∧ y+ = 0

x− = 0 ∧ y− = 0

y+ = 0

y+ > 0
y+ − 1
z+ + 1

x+ = 0

x+ > 0
x+ − 1
z+ + 1

y− = 0x− = 0

x− > 0 ∧ y− > 0
x− − 1, y− − 1, z− + 1

x+ > 0 ∧ y+ > 0
x+ − 1, y+ − 1, z+ + 1

x+ = 0y+ = 0

figure 3.6 : Mmax(x, y, z) = z := max{x, y}

Furthermore, all counters are increasing only in gadgets (or eventually normalized at the end) and decreasing only
after. In addition, the total number of state is linear with the size of the expression because there is one gadget
per node in the semantic tree.

3.2 Complexity of decision problems with an expression combiner

Now we prove in the next lemma, that all decision problems can be solved by the zero-emptiness problems. Thus,
we show different complexity cases for the zero-emptiness problems.

Lemma 3.3

All decision problems for functions defined by composition of functional ZkSum-WA and an expression can be
solved with constant Boolean combinations of zero-emptiness problems.

Proof

Given F a ZnSum-WA, G a ZmSum-WA, two expressions Ef over Xf and Eg over Xg such that Xf ∩Xg = ∅,
|Xf | ≤ n and |Xg| ≤ m. We also take a threshold c ∈ Z, �∈ {≤, <,=, >,≥} and �∈ {>,≥}.

Emptiness : ∃u ∈ LF . Ef ([[F ]](u)) � c ⇐⇒ ∃u ∈ LA. E([[A]](u)) � 0 with :

• E := Ef + (−xc) with xc a fresh variable.

• A is like the automaton F which an additional vector dimension. All transitions are lifted with a zero
on the (n+ 1)th field. To assign the last field to the value of c, we simulate a starting transition with a
copy of the initial state (same outgoing transitions) and obviously, the (n+ 1)th field add c. The initial
state of A is the new one. Remark, LF = LA.
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Universality : The universality problems can be expressed by an emptiness negations. We define the operator
negation not {≤7→>,<7→≥, >7→≤,≥7→<}.

�∈ {≤, <,>,≥} ∀u ∈ LF . Ef ([[F ]](u)) � c ⇐⇒ ¬∃u ∈ LF . Ef ([[F ]](u)) not(�) c

�∈ {=} ∀u ∈ LF . Ef ([[F ]](u)) = c ⇐⇒ ¬ (∃u ∈ LF . Ef ([[F ]](u)) < (�)c ∨ Ef ([[F ]](u)) > c)

Comparison : ∀u ∈ LF ∩ LG . Ef ([[F ]](u)) � Eg([[G]](u)) ⇐⇒ ∃u ∈ LA. E(A(u)) � 0 with

• E := Ef + (−Eg).
• A := F × G the direct product. Remark, LF ∩ LG = LA.

Theorem 3.4

Let M be a k-counter machine with m transitions, one reversal. L0
M 6= ∅ if and only if M accepts some input in

(kmkC) transitions where C is constant. Admitted [17]

Theorem 3.5

All decision problems are in PSpace for functions defined by the composition of a functional ZkSum-WA and an
expression (even if the automaton is given as a product of k ZSum-WA). The problems are in NLogPSpace if k
and the size of the expression are fixed with a unary encoding of weighs).

Proof

Given A a functional ZkSum-WA with ` the maximal weight, m its number of transitions and E be an expression
over XE such that |XE | ≤ k. We show that ∃u ∈ LA. E(A(u)) � 0 with �∈ {≤, <,=, >,≥} is in PSpace. By
lemma 3.1 one can construct a reversal bounded counter machines MA
which have O (mk`) transitions and 2k counters (increasing only). More-
over, by lemma 3.2 one can construct a reversal bounded counter machine
ME which has O (|E|) transitions, 2|E| counters and a single reversal
(increasing-decreasing). Finally, we construct M :=MA ·ME ·M� with
O (m|E|`) transitions, 2|E| counters (MA use variables counter of ME ,
M� use the root counter of ME) and a single reversal (because MA is
increasing only,ME is increasing-decreasing andM� is decreasing only).

Then, LM 6= ∅ ⇐⇒ ∃u ∈ LA. E(A(u)) � 0. By theorem 3.4,

LM 6= ∅ if and only if M accepts an input in O
(

(m|E|`)(4k)
)

transi-

tions. Thus, one can construct a non-deterministic space bounded Turing
machine with a binary counter which guesses a run in M smaller than

O
(

(m|E|`)(4k)
)

. This machine accepts if M accepts, and rejects if the

counter value exceeds the transition threshold value or if M rejects by
transition default. Therefore, the Turing Machine uses O (k log2 (m|E|`))
space.

M< M≤ M=

M≥

M>

x = 0
∧

y > 0

x
=

0

x
=

0 ∧
y

=
0

y = 0

x = 0 ∧ y > 0

x > 0 ∧ y > 0
x− 1, y − 1

figure 3.7 : Set one accepting state

Finally, by lemma 3.3 all other decision problems can be expressed with constant Boolean combinations of
zero-emptiness problems. If the automaton is given by k automata A1, . . . ,Ak whose product defines A, then its

number of transitions must be mk and the maximal value of a counter O
(

(m|E|`)(8k)
)

. Thus, the complexity

does not change. Remark, if k, |E| are fixed and a unary encoding is used for weights (threshold included) the
complexity would be in NLogSpace.

Theorem 3.6

Zero-Emptiness problems are PSpace-Hard for functions defined by composition of the product of k ZSum-WA
and an expression (even with a unary encoding of weighs).

Proof

By reduction from the Boolean Emptiness for intersection of regular languages problem. Recall,
⋂k
i=1 Li 6= ∅

where Li be a regular language for each i ∈ [1..k], is PSpace-Complete [25]. Given a set of k regular automata

A1, . . . ,Ak one can construct k ZSum-WA Ã1, . . . , Ãk (put zero on all transitions). Remark, weights and threshold
representation have the same size with a unary and binary encodings. For zero-emptiness problem with �∈ {≤,=
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,≥} we take the expression which just sum all variables, with < subtract 1 at this sum and with > add 1 at this
sum. The reduction is lineare because the automata constructions are constant and the expressions constructions
are lineare.

∃u ∈ LA1 ∩ · · · ∩ LAk ⇐⇒ ∃u ∈ Ã1 ∩ · · · ∩ Ãk.
k∑
i=1

[[Ai]](u) � 0 where �∈ {≤,=,≥}

⇐⇒ ∃u ∈ Ã1 ∩ · · · ∩ Ãk.
k∑
i=1

[[Ai]](u)− 1 < 0

⇐⇒ ∃u ∈ Ã1 ∩ · · · ∩ Ãk.
k∑
i=1

[[Ai]](u) + 1 > 0

Theorem 3.7

Zero-Emptiness problems are NP-Hard for functions defined by composition of ZkSum-WA and an expression
(even when k and the size of the expressions are fixed).

Proof

By reduction from the Set Partition problem. Recall, given a multiset S := {n1, . . . , nk} of natural number, the
question whether there exists I such that

∑
i∈I ni =

∑
i/∈I ni is NP-complete [23, 28]. For any set S one can

construct the ZSum-WA in figure 3.8 and expressions such that the (largest/smallest) difference between x1 and
x2 should be exactly 0. Remark, k and |E�| are fixed. The reduction is lineare because the automata constructions
are lineare and the expressions constructions are constant.

A := a |n1

b | − n1

a |nk
b | − nk

figure 3.8 : a to put n ∈ {n1, . . . nk} in I, b otherwise

• E=
E≤

:= max{x1 − x2, x2 − x1} • E≥ := min{x1 − x2, x2 − x1}
• E< := max{x1 − x2, x2 − x1} − 1 • E> := min{x1 − x2, x2 − x1}+ 1

∃I.
∑
i∈I
ni =

∑
i/∈I
ni ⇐⇒ ∃u ∈ {a, b}k.

∑
u[i]=a

ni =
∑

u[i]=b

ni

⇐⇒ ∃u ∈ {a, b}k,∃x1, x2.
∧


x1 =
∑

u[i]=a

ni

x2 =
∑

u[i]=b

ni

E�(x1, x2) ≥ 0


⇐⇒ ∃u ∈ {a, b}k. E�([[A]](u)) � 0 where �∈ {<,≤,=,≥, >}

Theorem 3.8

Zero-Emptiness problems are NP-Hard for function defined by composition of ZkSum-WA and an expression
(even with unary encoding of weights, but k and the size of the expression cannot both be fixed).

Proof

By reduction from 3-Partition problem. Recall, given a multiset S := {n1, . . . , n3k} of integers encoded in unary,
the question whether exists I1, . . . Ik a partition of S such that

∑
n∈I1 n = · · · =

∑
n∈Ik n and |I1| = · · · = |Ik| = 3

is Strongly NP-Complete [16, 28]. For any set S one can construct the Z2kSum-WA in figure 3.10 and the
expressions in figure 3.9. Remark, on the one hand A evaluates 2k variables, the k first represent respective sum
of Ij ’s elements for each j ∈ {1, . . . , k} and the k last represent respective cardinal of Ij for each j ∈ {1, . . . , k}.
On the other hand, partition of S by I1, . . . , Ik is fulfilled by construction of A. The reduction is lineare because
the automata and expressions constructions are lineare.

•
E=

E≤
:= max


min{x1, . . . , xk} −max{x1, . . . , xk}
max{x1, . . . , xk} −min{x1, . . . , xk}

min{x′1, . . . , x′k, 3} −max{x′1, . . . , x′k, 3}
max{x′1, . . . , x′k, 3} −min{x′1, . . . , x′k, 3}

 • E≥ := min


min{x1, . . . , xk} −max{x1, . . . , xk}
max{x1, . . . , xk} −min{x1, . . . , xk}

min{x′1, . . . , x′k, 3} −max{x′1, . . . , x′k, 3}
max{x′1, . . . , x′k, 3} −min{x′1, . . . , x′k, 3}


• E< := max


min{x1, . . . , xk} −max{x1, . . . , xk}
max{x1, . . . , xk} −min{x1, . . . , xk}

min{x′1, . . . , x′k, 3} −max{x′1, . . . , x′k, 3}
max{x′1, . . . , x′k, 3} −min{x′1, . . . , x′k, 3}

− 1 • E> := min


min{x1, . . . , xk} −max{x1, . . . , xk}
max{x1, . . . , xk} −min{x1, . . . , xk}

min{x′1, . . . , x′k, 3} −max{x′1, . . . , x′k, 3}
max{x′1, . . . , x′k, 3} −min{x′1, . . . , x′k, 3}

 + 1

figure 3.9 : The (largest/smallest) difference between the sums or the cardinals & 3 should be exactly 0
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A := a1


n1 1
0 0
...

...
0 0

 . . . ak


0 0
...

...
0 0
n1 1

 a1


n3k 1
0 0
...

...
0 0

 . . . ak


0 0
...

...
0 0
n3k 1



figure 3.10 : The letter aj to put n ∈ {n1, . . . , n3k} in the set Ij (matrix form is just of readability)

∃I1, . . . , Ik.
∑
n∈I1

n = · · · =
∑
n∈Ik

n ∧ |I1| = · · · = |Ik|

⇐⇒ ∃u ∈ {a1, . . . , ak}3k.
∑

u[i]=a1

ni = · · · =
∑

u[i]=ak

ni ∧ ∀j ∈ [1..k]. |u|aj = 3

⇐⇒ ∃u ∈ {a1, . . . , ak}3k. ∃x1 . . . xk, x
′
1 . . . x

′
k.

k∧
j=1

xj =
∑

u[i]=aj

ni ∧
k∧
j=1

x′j = |u|aj ∧ E�(x1, . . . , xk, x
′
1, . . . , x

′
k) � 0

⇐⇒ ∃u ∈ {a1, . . . , ak}3k. E�([[A]](u)) � 0 where �∈ {<,≤,=,≥, >}

Theorem 3.9

Zero-Emptiness problems are NLogSpace-Hard for function defined by composition of ZkSum-WA and an
expression (even if k and the size of the expression are fixed with a unary encoding of weighs).

Proof

By reduction from the membership of non-deterministic regular automata problem. Recall, given A ∈ REGΣ a
regular automata, deciding ∃u ∈ Σ∗. u ∈ LA is NLogSpace-Complete [22, 30]. Given A ∈ REGΣ, one can
construct a ZSum-WA Ã (put zero on all transitions) and an expression E which just returns immediately the value
of the unique variable. Remark, weights and threshold representation have the same size with unary and binary
encodings, k and |E| are fixed. The reduction is constant because the automata and expressions constructions are
constant.

∃u ∈ LA ⇐⇒ ∃u ∈ LÃ. [[Ã]](u) � 0 where �∈ {≤, <,=, >,≥}

3.3 Summary

Σ∗ → Zk Zk → Z fixed parameters encoding ∃ ∀ �

functional

ZkSum-WA
Expr

binary NP -Hard CoNP-Hard

unary NP-Hard CoNP-Hard

k, |E|
binary NP-Hard CoNP-Hard

unary NLogSpace−Complete

functional
k∏

ZSum-WA
Expr

binary
PSpace−Complete

unary

k, |E|
binary NP-Hard CoNP-Hard

unary NLogSpace−Complete

4 Presburger

In this section, we extend expression combiners to existential Presburger logic and show several translations.

Definition : Presburger arithmetic

An existential Presburger formula is given by the following grammars where variables are in Z.

φ := t = t | t < t | φ ∨ φ | φ ∧ φ | ∃x. φ t := 0 | 1 | x | t+ t
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A formula is associated with its semantics tree (described beside for φ :=
∃x. x + 0 = 1). We define the language T (φ) ⊆ {α, β}∗ to describe all
correct paths in the semantics tree of φ. Let’s us note φu to describe
the sub-formula, or tu for terms, at position u ∈ T (φ). We define the
proposition Var(φu) to hold if φu is a variable. The size of a formula φ, is
|φ| := |T (φ)| and the set of φ’s free variables are denoted Free(φ).

∃x =

+

xα

0

βα

1β
αε

figure 4.1 : Semantic tree

Traditionally, the Presburger arithmetic is given with variables interpreted over natural numbers, but both
models have the same expressiveness (see technical details in Appendix B). Remark, one can represent a constant
by a formula with the same size as its encoding. For a binary encoding of C we use ∃xlog2(c), . . . , x1. xlog2(c) +
xlog2(c) + ...+ x1 + x1 and for a unary encoding we use 1 + · · ·+ 1︸ ︷︷ ︸

C

.

4.1 ZkSum-WA valuation to Presburger combiner

We propose a translation of ZkSum-WA to existential Presburger formulas through a grammar which uses an
external theorem. This will allow us to reduce all decision problem to the satisfiability of the formula.

Theorem 4.1

Satisfiability problem for an existential Presburger formula is NP-Complete. Admitted [33]

Definition : Context-Free Grammar

The syntax of a context-free grammar is the tuple 〈V,Σ, P, S〉 where :
• V non-terminal alphabet

• Γ terminal alphabet

• P ⊆ V × (V ∪ Σ)∗ rewrite rules

• S start symbol

Given u, v ∈ (V ∪ Γ)∗, we write u � v if there exist u1, u2, u
′ ∈

(V ∪ Γ)∗ and A ∈ V such that u = u1Au2, v = u1u
′u2 and P (A, u′).

We denote by�∗ the reflexive transitive closure of�. The language
of G is LG := {w ∈ Γ∗ : S �∗ w}.

Lemma 4.2

Let A be a functional ZkSum-WA and Γ := {α−1 , α
+
1 , . . . , α

−
k , α

+
k } a fixed alphabet of terminal symbols. One can

compute, in linear time, a context free grammar G such that :

w ∈ LG ⇐⇒ ∃u ∈ LA. ∀i ∈ [1..k]. [[A]](u)[i] = |w|α+
i
− |w|α−i

Proof

Basically, we construct a grammar whose non-terminal alphabet is a state of A and its production rules are
transitions. But, if weights of the automaton have binary encoding then we must use a trick to avoid an exponential
blow-up. To do this, we simply add some special non-terminal symbols and add the production rules, see figure
4.2. Then, to produce x times the symbol α./j for some j ∈ [1..k] and ./∈ {+,−}, we decompose x into a sum or
substraction of a power 2 with non-terminal symbols [./ 2j ]. For states p, q and letter a, we note the translation
weights as follow.

〈γ(p, a, q)〉 :=
(
α
Sign(γ(p,a,q)[1])
1

)|γ(p,a,q)[1]|
. . .
(
α
Sign(γ(p,a,q)[k])
k

)|γ(p,a,q)[k]|

Finally, given A := 〈Σ, Q, s, F,∆, γ, `〉 we construct G := {V,Γ, P, S} where :

• V := Q ∪
blog2(`)c⋃
i=0

k⋃
j=0
{
[
+2ij

]
,
[
−2ij

]
}

• Γ :=
k⋃
j=0
{α+

j , α
−
j }

• S := s

• P :=
⋃

⋃
(p,a,q)∈∆

{p� q〈γ(p, a, q)〉⋃
p∈F
{p� ε}



∀i ∈ [1..k].


[
+20

i

]
� α+

i

...[
+2blog2(`)c

i

]
�
[
+2blog2(`)c−1

i

] [
+2blog2(`)c−1

i

]

∀i ∈ [1..k].


[
−20

i

]
� α−i
...[

−2blog2(`)c
i

]
�
[
−2blog2(`)c−1

i

] [
−2blog2(`)c−1

i

]
figure 4.2 : weights encoding
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Obviously, there is a bijection between the derivations of G and paths in A. Indeed, all rewriting rules consume a
non-terminal symbol of Q and produce one of them (possibly zero if the consumed state is accepting). In particular,
we have w ∈ LG ⇐⇒ s�∗ qf ∈ F � w��� and then all words of LG are in bijection with an accepting path of
A. Furthermore, the derivation of all extra non-terminal symbol is deterministic. By a straightforward induction
we can obtain the correction of weight translations along a path. Thus, the size of G is clearly O(|A|).

Example

A :=

p q

a

(
−1
3

)a

(
5
0

)
b

(
0
−7

) G := {V,Γ, P, S}

• S := p • V := {p, q} ∪
blog2(7)c⋃
i=0

k⋃
j=0
{
[
+2ij

]
,
[
−2ij

]
}

• Γ :=
k⋃
j=0
{α+

j , α
−
j } • P :=


p�

[
+22

1

] [
+20

1

]
p

p�
[
−20

1

] [
+21

2

] [
+20

2

]
q

q�
[
−22

2

] [
−21

2

] [
−20

2

]
q

q� ε


Definition : Parikh Image

The Parikh image of a string is the function that maps each symbol of the alphabet to the number of its occurrences
in the string. The Parikh image of a language is the set of Parikh images of its words.

Theorem 4.3

Given a context-free grammar G on terminals symbols a1, . . . , ak, one can compute an existential Presburger
formula φG for the Parikh image of LG in linear time i.e. such that φG(x1, ..., xk) holds if and only if some w ∈ LG
contains aj exactly xj times for each j ∈ [1..k]. Admitted [37]

Theorem 4.4

Emptiness problems are NP-Complete, Comparison and Universality problems are CoNP-Complete for func-
tion defined by composition of ZkSum-WA and existential Presburger formula.

Proof

Given F a ZnSum-WA, G a ZmSum-WA, two existential Presburger formulae φf , φg with respectively n + 1,
m + 1 free variables, an integer c ∈ Z, �∈ {≤, <,=, >,≥} and �∈ {>,≥}. We define the operator negation not
: {>7→≤,≥7→<}. By lemma 4.2 and theorem 4.3 one can construct, in linear time, an existential Presburber
formula φF such that φF (x1, . . . , xn) holds if and only if ∃u ∈ LF . ∀i ∈ [1..n]. [[F ]](u)[i] = xi. Same idea for φG
and φF×G for the direct product F × G.

Emptiness : The problem can be expressed with following formula and by theorem 4.1, its satisfiability is
NP-Complete.

∃x1, . . . , xn, x ∈ Z.
∧ φF (x1, . . . , xn)

φf (x1, . . . , xn, x)

x � c


Universality : The problems can be expressed by emptiness negations.

Comparison : The problem can be expressed with the negation of the following formula and by theorem 4.1,
its non-satisfiability is CoNP-Complete.

∃

 x1, . . . , xn

y1, . . . , ym

x, y

 ∈ Z.
∧ φF×G(x1, . . . xn, y1, . . . , xm)

φf (x1, . . . , xn, x) ∧ φg(y1, . . . , ym, y)

x ≺ y



4.2 Translations from/to Presburger combiner

Now, we present a translation of an expression combiner to an existential Presburger formula, to update some the
upper bound of decision problem in the previous section (when valuation is given by a ZkSum-WA).
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We give also, a translation of an existential Presburger formula to a reversal bounded counter machine for
extend the PSpace complexity result (when valuation is given by a product of k ZSum-WA). The last translation
result is known because it is a consequence of the fact that the class of Presburger relations is exactly the class of
relations computable by deterministic reversal fixed counter machine [18].

Lemma 4.5

Let E be an expression over X := {x1, . . . , xk} (defined in previous section). One can construct in linear time an
existential Presburger formula φE with free variables {x1, . . . , xk, x} such that :

∀ν : X → Z. ν ∪ {x 7→ n} |= φE ⇐⇒ E(ν) = n

Proof

We show the construction of φE by structural induction on E. Let’s note Eu to describe the sub-expression at
position u ∈ T (E) in the semantics tree.

Constants : Case Eu := C where C ∈ {0, 1}. φu(x1, . . . , xk, xu) := (xu = C)

Minus : Case Eu := −Euα. By induction hypothesis ν ∪ {xuα 7→ n} |= φuα ⇐⇒ Euα(ν) = n.

φu(x1, . . . xk, xu) := ∃xuα. φuα(x1, . . . , xk, xuα) ∧ xu + xuα = 0

Sum : Case Eu := Euα + Euβ. By induction hypothesis ν ∪ {xuα 7→ n} |= φuα ⇐⇒ Euα(ν) = n and
ν ∪ {xuβ 7→ m} |= φuβ ⇐⇒ Euβ(ν) = m.

φu(x1, . . . xk, xu) := ∃xuα, xuβ. φuα(x1, . . . , xk, xuα) ∧ φuβ(x1, . . . , xk, xuβ) ∧ xu = xuα + xuβ

Variable : Case Eu := xi. φu(x1, . . . , xk, xu) := (xu = xi)

Maximum : Case Eu := max{Euα, Euβ}. By induction hypothesis ν ∪ {xuα 7→ n} |= φuα ⇐⇒ Euα(ν) = n and
ν ∪ {xuβ 7→ m} |= φuβ ⇐⇒ Euβ(ν) = m.

φu(x1, . . . xk, xu) := ∃xuα, xuβ. φuα(x1, . . . , xk, xuα) ∧ φuβ(x1, . . . , xk, xuβ)
∧( xu = xuα ∨ xu = xuβ

xu ≥ xuα ∧ xu ≥ xuβ

)

Minimum : Case Eu := min{Euα, Euβ}. By induction hypothesis ν ∪ {xuα 7→ n} |= φuα ⇐⇒ Euα(ν) = n and
ν ∪ {xuβ 7→ m} |= φuβ ⇐⇒ Euβ(ν) = m.

φu(x1, . . . xk, xu) := ∃xuα, xuβ. φuα(x1, . . . , xk, xuα) ∧ φuβ(x1, . . . , xk, xuβ)
∧( xu = xuα ∨ xu = xuβ

xu ≤ xuα ∧ xu ≤ xuβ

)

Corollary 4.6

By lemma 4.5 and theorem 4.4, emptiness problems are NP-Complete, comparison and universality problems
are CoNP-Complete for functions defined by composition of ZkSum-WA and an expression (defined in the
previous section). This does not work when the valuation is given as a product of k ZSum-WA because all of them
must read the same word which forces the computation of the product to construct the grammar.

Lemma 4.7

Given an existential Presburger formula φ, one can construct a 2|φ|-counter machineM whoseX :=
⋃
u∈T (φ){x+

u , x
−
u }

its counter set (one reversal, increasing-decreasing) and with O(|φ|) transitions such that :

∀ν : Free(φ)→ Z. ν |= φ ⇐⇒ ε ∈ Lν̂M

where ∀u ∈ T (E).ν̂(x+u ) :=

{
ν(φu) if φu ∈ Free(φ) ∧ 0 < ν(φu)

0 otherwise
ν̂(x−u ) :=

{
−ν(φu) if φu ∈ Free(φ) ∧ ν(φu) < 0

0 otherwise

Proof

We start by noting that the term grammar of a formula is included in the expression grammar (defined in the
previous section). So, we will use the lemma 3.2 to build a machine which evaluates an expression and stores the
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result in its root counter. We show the construction by structural induction on φ. Let’s note φu to describe the
sub-formula, or tu for term, at position u ∈ T (φ) in semantic tree.

Compare : Case φu := tuα � tuβ where �∈ {=, <}. By lemma 3.2 one can construct
Muα over Xuα :=

⋃
u∈T (φuα){x+, x−} and Muβ over Xuβ :=

⋃
u∈T (φuβ){x+, x−}

denotes respectively φuα with the root couple (x−uα, x
+
uα) and φuβ with the root

couple (x−uβ, x
+
uβ). After the computation of Muα and Muβ, one proceeds to

test (x+
uα + x−uβ) � (x+

uβ + x−uα) realized by Madd and M�, see figure 4.3 and
figure 3.7 (just for < and =). To do this, we construct Mu := Muα · Muβ ·
Madd(x+

uα, x
−
uβ) · Madd(x+

uβ, x
−
uα) · M�(x+

uα, x
+
uβ).

y > 0
x+ 1, y − 1

figure 4.3 : Madd

Or : Case φu := φuα ∨ φuβ. By induction hypothesis Muα over Xuα :=
⋃
u∈T (φuα){x+, x−} and Muβ over

Xuβ :=
⋃
u∈T (φuβ){x+, x−} denotes respectively φuα and φuβ. The machine choose non-deterministically one

of two formulas. To do this, we construct Mu :=Muα ‖ Muβ. Remark, Xuα ∩Xuβ = ∅ and then ‖ is well
define.

And : Case φu := φuα ∧ φuβ. By induction hypothesis Muα over Xuα :=⋃
u∈T (φuα){x+, x−} and Muβ over Xuβ :=

⋃
u∈T (φuβ){x+, x−} denotes respec-

tively φuα and φuβ. The machine control that Muα and Muβ accept ε. To do
this, we construct Mu :=Muα · Muβ.

Exists : Case φu := ∃x. φuα. By induction hypothesis Muα over Xuα :=⋃
u∈T (φuα){x+, x−} denotes φuα. Before the computation of Muα, the machine

guess a value for variable x realized by M∃, see figure 4.4. To do this, we
construct Mu :=M∃ · Muα.

x+ 1

ε

figure 4.4 : M∃

Corollary 4.8

By lemma 4.7 and theorem 3.5, all decision problems are in PSpace for functions defined by the composition
of a functional ZkSum-WA and an existential Presbuger formula (even if the automaton is given as a product of
k ZSum-WA).

4.3 Summary

Σ∗ → Zk Zk → Z fixed parameters encoding ∃ ∀ �

functional

ZkSum-WA

Expr

binary NP−Complete CoNP−Complete

unary NP−Complete CoNP−Complete

k, |E|
binary NP−Complete CoNP−Complete

unary NLogSpace−Complete

Presburger
binary

NP−Complete CoNP−Complete
unary

functional
k∏

ZSum-WA

Expr

binary
PSpace−Complete

unary

k, |E|
binary NP−Complete CoNP−Complete

unary NLogSpace−Complete

Presburger
binary

PSpace−Complete
unary
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5 Robustness

Most computer systems are integrated in a physical environment and the data processed often contains a small
amount of errors or uncertainty (for example, the data sensor acquisition in reactive systems for simultaneous
localization and mapping). Other examples are text editors confronted with possibly misspelled keywords and
DNA chains sometimes incorrectly sequenced in computational biology. It is desirable that such random noise
in the input does not cause an unpredictable behavior of the system, overlooked sensitivity to disturbance or
inaccuracy of individually considered image. In this section, we prove that the lipschitz robustness problem is
undecidable in general for functions and distances realized by a weighted automata. Nevertheless, it becomes
decidable if the function and the distance are closed under max, plus, minus operations and when the comparison
problems are decidable. In addition, we define a class of functions called good for distance˝and we show that it
is decidable whether those functions realize a distance.

Definition : Metric space

A metric space is a tuple (S, d) where S is a set and d : S × S → R which satisfies following axioms.

non-negative : ∀u, v ∈ S. d(u, v) ≥ 0

symmetry : ∀u, v ∈ S. d(u, v) = d(v, u)

separation : ∀u, v ∈ S. d(u, v) = 0↔ u = v

triangle inequality : ∀u, v, w ∈ S. d(u, v) + d(v, w) ≥ d(u,w)

Definition : K-Lipschitz robustness

Given K > 0, a metric spaces (S, d) and f : S → R with dom(f)2 ⊆ dom(d). We say that f is K-robust if it
satisfies :

∀u, v ∈ dom(f). |f(u)− f(v)| ≤ K × d(u, v)

This notion is not appropriate in the discrete setting, as discrete functions are in general not continuous.

Definition : Word convolution

To define a notion of distance between words, we need automata with many parameters. A technique is to encode
all words into a single one. To simplify the parameter process, one can find in the literature the convention that
stalling words on left.

Let Σ and Γ be two alphabets, we set Σ⊗ Γ := (Σ× Γ) ∪ ({#} × Γ) ∪ (Σ× {#}). Now we can define a word
in (Σ⊗ Γ)∗ as follows.

∀u ∈ Σ∗, ∀v ∈ Γ∗, u⊗ v :=


ε if u = ε ∧ v = ε

(a,#) · u′ ⊗ ε if u = au′ ∧ v = ε where a ∈ Σ. u′ ∈ Σ∗

(#, v′) · ε⊗ v′ if v = ε ∧ v = bv′ where a ∈ Γ. v′ ∈ Γ∗

(a, b) · u′ ⊗ v′ if u = au′ ∧ v = av′ where a ∈ Σ. b ∈ Γ. u′ ∈ Σ∗. v′ ∈ Γ∗

The size of u ⊗ v is obviously |u ⊗ v| := max{|u|, |v|}. In the remainder, we use some operations, adding useless
extra words and permute parameters. To do this, we just apply the respective transformation on all transitions of
the WA.

Definition : Domain restriction

Given A := 〈Σ, QA, sA, FA,∆A, γA〉 be a ZkSum-WA and a regular language defined B := 〈Σ, QB, sB, FB,∆B〉 a
regular automata. We describe the construction of the domain restriction [A]LB := 〈Σ, QA × QB, (sA, sB), FA ×
FB,∆, γ〉 such that L[A]LB

= LB ∧ ∀u ∈ L[A]LB
.
[[

[A]LB

]]
(u) = [[A]](u) and where ∆ and γ as follow.

p1
a | v−−→A q1 ∧ p2

a−→B q2 ⇒ (p1, p2)
a | v−−→[A]LB

(q1, q2)

5.1 Undecidability of robustness

We prove the undecidability of the lipschitz robustness problem when function and distance are both realized by
an N-WA.
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Definition : Automata convolution

Let A := 〈Σ, QA, sA, FA,∆A, γA〉 and B := 〈Γ, QB, sB, FB,∆B, γB〉 two ZSum-WA, we define A ⊗ B := 〈Σ ⊗
Γ, QA⊗B, sA⊗B, FA⊗B,∆A⊗B, γA⊗B〉 such that L[A⊗B] = (LA ∩LB)2 ∧∀u⊗ v ∈ L[A⊗B]. [[A⊗B]](u⊗ v) = [[A]](u) +
[[B]](v) and where :

• QA⊗B := (QA ∪ {> ; ⊥})× (QB ∪ {> ; ⊥})

• sA⊗B := (sA, sB)

• FA⊗B := (FA × FB) ∪ ({>} × FB) ∪ (FA × {>})

• ∆A⊗B and γA⊗B such that :

1. p1
a | v1−−−→A q1 ⇒ (p1,>)

〈a,#〉 | v1−−−−−−→A⊗B (q1,>)

2. p1
a | v1−−−→A q1 ⇒ (p1,⊥)

〈a,#〉 | v1−−−−−−→A⊗B (q1,⊥)

4. p2
b | v2−−−→B q2 ⇒ (>, p2)

〈#,b〉 | v2−−−−−−→A⊗B (>, q2)

5. p2
b | v2−−−→B q2 ⇒ (⊥, p2)

〈#,b〉 | v2−−−−−−→A⊗B (⊥, q2)

6. p1
a | v1−−−→A q1 ∧ p2

b | v2−−−→B q2 ⇒ (p1, p2)
〈a,b〉 | v1+v2−−−−−−−−→A⊗B (q1, q2)

7. p1
a | v1−−−→A q1 ∧ p2 ∈ FB ⇒ (p1, p2)

〈a,#〉 | v1−−−−−−→A⊗B (q1,>)

8. p1
a | v1−−−→A q1 ∧ p2 /∈ FB ⇒ (p1, p2)

〈a,#〉 | v1−−−−−−→A⊗B (q1,⊥)

9. p1 ∈ FA ∧ p2
b | v2−−−→B q2 ⇒ (p1, p2)

〈#,b〉 | v2−−−−−−→A⊗B (>, q2)

10. p1 /∈ FA ∧ p2
b | v2−−−→B q2 ⇒ (p1, p2)

〈#,b〉 | v2−−−−−−→A⊗B (⊥, q2)

Intuitively, we just make a classical product with four additional states which memorize the acceptance of the
smallest word. We can prove the property [[A ⊗ B]](u ⊗ v) = [[A]](u) + [[B]](v) by sum commutativity with a
straightforward double induction on the size of words. Remark, if A and B are functional then A⊗ B is also.

Theorem 5.1

Given K > 0, it is undecidable to determine whether a function f performed by an N-WA is K-lipschitz robust
for a distance realized by an N-WA.

Proof

By reduction from the inclusion problem for N-WA. Let A,B be two total N-WA, ∀w ∈ Σ∗. [[A]](w) ≤ [[B]](w)
is an undecidable problem [1]. We build A′,B′ two total N-WA such that ∀u, v ∈ Σ∗. |[[A]]′(u) − [[A]]′(v)| ≤
K · [[B]]′(u⊗ v) ⇐⇒ ∀w ∈ Σ∗. [[A]](w) ≤ [[B]](w) where B′ is a distance.

K := 1 A′ := A+1 B′ :=

{
Z if u = v

[B ⊗ B]+1
u6=v otherwise

where +1 means, add 1 to every weight

1. Automata semantic.
The effect of adding 1 to every weight is to add the size of the word to the return value. Since B′ reads
two words, the size of the convolution is the maximal one. Note that B′ just adds non-determinism between
[B ⊗ B]+1

u6=v and Z, see figure 5.1.

• LA′ = LA = Σ∗ ∧ ∀u ∈ LA. [[A′]](u) = [[A]](u) + |u|

• LB′ = LB = Σ∗ ∧ ∀u ∈ LB. [[B′]](u) =

{
0 if u = v

[[B]](u) + [[B]](v) + max{|u|, |v|} otherwise

2. Check that B′ is a distance.

non-negative : ∀u, v ∈ Σ∗. [[B]]′(u⊗ v) ≥ 0, obvious in N.

symmetry : ∀u, v ∈ Σ∗. [[B]]′(u⊗ v) = [[B]]′(v ⊗ u), by automata convolution.

separation : ∀u, v ∈ Σ∗. [[B]]′(u⊗ v) = 0⇔ u = v, by construction.

triangle inequality : Essentially, by automata convolution.

(σ, σ) : σ ∈ Σ | 0

figure 5.1 : Z

∀u, v, w ∈ Σ∗.
[[B]]′(u⊗ v) + [[B]]′(v ⊗ w) ≥ [[B]]′(u⊗ w) ⇐⇒
[[B]](u) + 2[[B]](v) + [[B]](w) + max{|u|, |v|}+ max{|v|, |w|} ≥ [[B]](u) + [[B]](w) + max{|u|, |w|}

3. Show the equivalence.

• Assume that ∀w ∈ Σ∗. [[A]](w) ≤ [[B]](w) and let u, v ∈ Σ∗. We want to prove that |[[A]]′(u)− [[A]]′(v)| ≤
K · [[B]]′(u⊗ v).
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0 ≤ [[A]](u) ≤ [[B]](u)⇒ 0 ≤ [[A]](u) + |u| ≤ [[B]](u) + [[B]](v) + max{|u| ; |v|}
0 ≤ [[A]](v) ≤ [[B]](v)⇒ 0 ≤ [[A]](v) + |v| ≤ [[B]](u) + [[B]](v) + max{|u| ; |v|}

Recall that K := 1, and then we can deduce, |[[A]]′(u)− [[A]]′(v)| ≤ K · [[B]]′(u⊗ v).

• Assume that w satisfies [[A]](w) > [[B]](w). We want to prove that there exists u and v such that
|[[A]]′(u) − [[A]]′(v)| > K · [[B]]′(u ⊗ v). Remark, [[A]](ε) = [[B]](ε) = 0. Thus w 6= ε. We can deduce,
|[[A]]′(w)− [[A]]′(ε)| > K · [[B]]′(w ⊗ ε)

We conclude on the undecidability of K-robustness problem by noting that A′ and B′ are total.

5.2 Decidability of robustness

Now, we define the class D of functions called good for distance˝and show that functions defined in the previous
sections (we say the class C for short) are in D. Finally, we prove that the lipschitz robustness problem is decidable
for a function from C.

Definition : Class D
Let D the set of pair (f, n) where f : (Σ∗)n → R a finitely presented function which satisfies following computable
axioms.

1. D is closed under parameters addition :
∀(f, n) ∈ D. ∃(g, n+ 1) ∈ D. ∀w ∈ Σ∗. g(u1, . . . , un, w) = f(u1, . . . , un)

2. D is closed under parameters permutation :
∀(f, n) ∈ D. ∀θ : {1, . . . , n} → {1, . . . , n}. f(θ(u1), . . . , θ(un)) ∈ D

3. D is closed under sum :
∀(f, n), (g, n) ∈ D. ([f + g], n) ∈ D where [f + g](u1, . . . , un) := f(u1, . . . , un) + g(u1, . . . , un)

4. Comparison problem is decidable :
∀(f, n), (g, n) ∈ D. f(u1, . . . , un) � g(u1, . . . , un) where �∈ {=, >,≥} is decidable.

5. D is closed under regular domain restriction :
∀(f, n) ∈ D. L ⊆ REGΣ. ([f ]L, n) ∈ D where [f ]L the domain restriction of f to L.

Lemma 5.2

Let (f, 2) ∈ D, one can decide if f is a distance.

Proof

Given (f, 2) ∈ D, one can check axioms separately.

non-negative : ∀u, v ∈ Σ∗. f(u, v) ≥ 0. Obvious by (4).

symmetry : ∀u, v ∈ Σ∗. f(u, v) = f(v, u). Define g(u, v) := f(v, u) by (2) and decide g(u, v) = f(v, u) by (4).

separation : Let L := {(u, v) ∈ Σ∗ × Σ∗ : u = v}. By (5), (4) and with the following equivalence.

∀u, v ∈ Σ∗. f(u, v) = 0↔ u = v ⇐⇒ [f ]L(u, v) = 0 ∧ [f ]L(u, v) > 0

triangle inequality : By (4) and with the following equivalence.

∀u, v, w ∈ Σ∗. f(u, v) + f(v, w) ≥ f(u,w)

⇐⇒ f1(u, v, w) + f1(v, w, u) ≥ f1(u,w, v) by (1) where ∀u, v, w ∈ Σ∗. f1(u, v, w) := f(u, v)

⇐⇒ f1(u, v, w) + f2(u, v, w) ≥ f3(u, v, w)
by (2) where f2 and f3 are f1 with parameters permutation
θ2 := {1→ 3, 2→ 1, 3→ 2}& θ3 := {1→ 1, 2→ 3, 3→ 2}

⇐⇒ [f1 + f2](u, v, w) ≥ f3(u, v, w) by (3)
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Definition : Class C
In the previous sections we defined several functions from Σ∗ to Z realized by composition of a valuation and a
combiner. All these functions made this new class, see Appendix C. Recall that these functions are closed under
min, max, plus and minus operations. Regarding combiner it is obvious for expressions and proved for existential
Presburger formulae in lemma 4.5.

Lemma 5.3

The functions of the class C satisfies the axioms of the class D.

Proof

(1) & (2) are a consequence of word convolution. (3) & (4) have been shown in previous sections. (5) is the
construction at the beginning of this section.

Corollary 5.4

By lemma 5.2 and lemma 5.3, one can decide if a function in C is a distance (with the complexity of comparison
for lower and upper bound).

Theorem 5.5

Given K > 0, the K-Lipschitz Robustness for function and distance in C is decidable (with the complexity of
comparison for lower and upper bound).

Proof

This is straightforward, just recall that function of C class are closed by min, max, plus, minus and rewrite the
problem with these operations. In the following equivalence, fl and fr add an useless parameter respectively on
right and left. Formally, ∀u, v ∈ Σ∗. fl(u⊗ v) := f(u) and ∀u, v ∈ Σ∗. fr(u⊗ v) := f(v).

∀u, v ∈ dom(f). |f(u)− f(v)| ≤ K × d(u, v) ⇐⇒

∀u, v ∈ dom(f). max{fl(u⊗ v)− fr(u⊗ v), fl(u⊗ v)− fr(u⊗ v)} ≤
K∑
1
d(u⊗ v)

6 Application

We present a simple instance of the problem inspired from [4, 3], and an application in both cases lipschitz robust
and not lipschitz robust. Consider a model of a shared resource between two clients A and B. To request access
to the resource, clients use the respective input symbols a and b. The system must satisfy the following safety
requirements. First, it cannot assign the resource to both clients simultaneously. In LTL syntax, this can be written
as sys1 := G ¬(A ∧ B). Second, a request has to be followed immediately by a grant, which can be formalized
by the guarantees sys2 := G (a → XA) and sys3 := G (b → XB). Finally, it is assumed that the environment
never raises both request signals at the same time, env := G ¬(a ∧ b). Combining the three guarantees and the
assumptions results in the specification φ = env→ (sys1 ∧ sys2 ∧ sys3). It requires the system to satisfy all three
guarantees, if the assumption is fulfilled.

A

⊥ B

ERR

〈b〉 | 0

〈a, b〉 | 1

〈〉 | 0

〈a〉 | 0

〈b〉 | 0

〈a, b〉 | 1

〈〉 | 0

〈a〉 | 0
〈a〉 | 0

〈b〉 | 0
〈〉 | 0

〈a, b〉 | 0

Σ | 1

figure 6.1 : fbad := [[Abad]]

A B

⊥

〈b〉 | 0

〈〉 | 0

〈a〉 | 0
〈a, b〉 | 1

〈b〉 | 0

〈〉 | 0

〈a〉 | 0
〈a, b〉 | 1

〈a〉 | 0
〈a, b〉 | 1 〈b〉 | 0

〈〉 | 0

figure 6.2 : fgood := [[Agood]]
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We present Abad, Agood, two possible implementations of φ in figure 6.1 and figure 6.2 with transitions
weighted by 1 if the system makes an error and 0 otherwise. The difference between both is that Abad crashes
when env is not satisfied while Agood gives priority to the client A in case of conflict. We will be interested
in robustness of these implementations overlooked of environment assumption failure, i.e. the robustness of the
implementations behavior when a and b are raised at the same time. Then, we define a distance realized by the
expression [[d]] : u⊗ v 7→ max{[[Al]](u⊗ v)− [[Ar]](u⊗ v), [[Ar]](u⊗ v)− [[Al]](u⊗ v)}. Intuitively, [[d]] is the distance
between the two input words with the number of times that sys is not satisfied metric.

(α, β) : ∀α ∈ Σ# \ {〈a, b〉}. ∀β ∈ Σ#. α 6= β | 1

(σ, σ) : σ ∈ Σ | 0

〈a, b〉 × Σ# \ {〈a, b〉} | 4

Σ {〈a, b〉} × Σ# | 0
〈a, b〉 × Σ# | 3

#× Σ | 0

figure 6.3 : Al

(α, β) : ∀α ∈ Σ#. ∀β ∈ Σ# \ {〈a, b〉}. α 6= β | 0

(σ, σ) : σ ∈ Σ | 0

Σ# \ {〈a, b〉} × 〈a, b〉 | 3

Σ# × Σ {〈a, b〉} | 0
Σ# × 〈a, b〉 | 3

Σ×# | 0

figure 6.4 : Ar

We can check that [[d]] is a distance :

non-negative : ∀u, v ∈ Σ∗. [[d]](u⊗ v) ≥ 0, because [[d]](u⊗ v) = |[[Al]](u⊗ v)− [[Ar]](u⊗ v)|.

symmetry : ∀u, v ∈ Σ∗. [[d]](u⊗ v) = [[d]](v ⊗ u), by commutativity of max function.

separation : ∀u, v ∈ Σ∗. [[d]](u⊗ v) = 0 ⇔ u = v, by construction. If u 6= v then Al take the middle transition
which add 1 to the result and thus |1 mod 3 − 0 mod 3| 6= 0. If u = v then Al, Ar both stay in the first
state and return 0.

triangle inequality : ∀u, v, w ∈ Σ∗. [[d]](u⊗ v) + [[d]](v ⊗ w) ≥ [[d]](u⊗ w), because ∀x, y ∈ R. |x|+ |y| ≥ |x+ y|.

Since the value returned by fbad is not linear with respect to the number of environment failures, we can say
that fbad is not robust. Formally, set u ∈ 〈a, b〉〈a〉∗ such that |u| = e4K we obtain |fbad(u) − fbad(ε)| = e4K and
K × [[d]](u ⊗ ε) = 4K. Then there no K > 0 such that ∀u, v ∈ Σ∗. |fbad(u) − fbad(v)| ≤ K × [[d]](u ⊗ v). On
the other hand, fgood is 1-Lipschitz robust, in fact we have ∀u, v ∈ Σ∗. 3|fgood(u) − fgood(v)| − 1 ≤ [[d]](u ⊗ v) ≤
3|fgood(u)− fgood(v)|+ 1.

7 Conclusion

In this report, we define a calculation model strictly more expressive than the weighted automata k -valued which
all classical quantitative decision problems (emptiness, universality, inclusion, equivalence) are in PSpace. All
complexity results are summarized in the table Appendix C. We also presented two general characterizations to
obtain the decidability of lipschitz robustness and distance axioms.

A similar analysis could be undertaken if the evaluators are made by discounted sum automata or automata
ratio. We could investigate the decidability of games with Presburger winning condition. investigate the decidability
of games with Presburger winning condition. On the side of the robustness many works already exist but are not
coupled with this model. We might consider the synthesis of robust systems from a logical specification.

We could also consider that our combiners have a expressiveness to heard something closer to a programming
language including for example branching (if, then, else). Of course, the behavior of software systems are rarely
continuous. However, verification technique like ours allows us to identify modules of a program that satisfy
continuity properties. For example the sorting algorithms. Given A,B, two input arrays where B is obtained by
perturbing each item of A at most by ±1. Then, Sort(B) can be obtained by perturbing each item of Sort(A) at
most by ± 1.

input A : 1, 3, 5, 3, 4 B : 1, 2, 4, 4, 3
output Sort(A) : 1, 3, 3, 4, 5 Sort(B) : 1, 2, 3, 4, 4

A benefit of this is that such modules are amenable to analysis by continuous methods. In the longer run,
we can imagine a reasoning toolkit for programs that combines continuous analysis techniques, like numerical
optimization or symbolic integration, and logical methods for analyzing code.
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Appendix B : Details

lemma 3.1 : We wants create a macro to do p
σ|x1+c1;...;xk+ck−−−−−−−−−−−→M q with k > 0 and xj := x+

j or xj := x−j
according to sign of cj for each j. The transition is illegal because a non-constant number counters can
be transformed simultaneously. To do this, we split it in more simpler macros. Note that the following
constructions do not decrease counter and all zero guards are top.

• We describe a first macro for p(i,0)
ε|xi+c−−−−→M p(i,|c|). According to sign of the constant c :

c = 0 p(i,0)

c > 0 p(i,0)

ε|x+i +1
−−−−→M p(i,1) · · · p(i,c−1)

ε|x+i +1
−−−−→M p(i,c)

c < 0 p(i,0)

ε|x−i +1
−−−−→M p(i,1) · · · p(i,|c|−1)

ε|x−i +1
−−−−→M p(i,|c|)

Note that this construction has c+ 1 states and c transitions

• We describe a second macro for p(1,0)
ε|x1+c1;...;xk+ck−−−−−−−−−−−→M p(k,|ck|). By induction on k > 0 :

k = 1 p(1,0)
ε|x1+c1−−−−−→M p(1,|c1|)

k > 1 p(1,0)
ε|x1+c1;...;xk−1+ck−1−−−−−−−−−−−−−−→M p(k−1,|ck−1|)

ε−→ p(k,0)
ε|xk+ck−−−−−→M p(k,|ck|)

Note that this construction has k +
k∑
j=1

cj states and (k − 1) +
k∑
j=1

cj transitions.

• We describe a third macro for p
σ|x1+c1;...;xk+ck−−−−−−−−−−−→M q.

p
σ−→ p(1,1)

ε|x1+c1;...;xk+ck−−−−−−−−−−−→M p(k,|ck|)
ε−→ q

Note that this construction has 2 + k +
k∑
j=1

cj states and k + 1 +
k∑
j=1

cj transitions.

Presburger arithmetic : To be convinced that Presburger arithmetic with variables interpreted over natural
or rationnal number have same expressiveness, we give an encoding of a domain in the other model and a
formula describing all the correct encodings.

N→ Z We propose an encoding (not injective because there are two 0) which consists in representing a
rational by a natural couple xZ := (xsign, xval). Other relations can be defined as follow.

xZ =Z yZ := (xval = yval = 0) ∨ (xsign = ysign ∧ xval = yval)

xZ <Z yZ := (xsign = ysign) ∨ (xsign = ysign = 1 ∧ xval < yval) ∨ (xsign = ysign = 0 ∧ yval < xval)

zZ =Z xZ +Z yZ :=
∧


xval < yval ∨ yval < xval ∨ zsign = xsign

xval < yval ∨ zsign = xsign

yval < xval ∨ zsign = ysign

xsign < ysign ∨ ysign < xsign ∨ zval = xval + yval

xsign < ysign ∨ zval + yval = xval

ysign < xsign ∨ zval + xval = yval


Z→ N Since N ⊆ Z there is no need encoding, so xN := x. It is possible to describe the set of positive

numbers with four squares theorem of Lagrange [38] ∃a, b, c, d. xN = a+ a+ b+ b+ c+ c+ d+ d. The
other relations are completely obvious.
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Appendix C : Summary

Σ∗ → Zk Zk → Z fixed parameters encoding ∃ ∀ �

functional

ZkSum-WA

Expr

binary NP−Complete CoNP−Complete

unary NP−Complete CoNP−Complete

k, |E|
binary NP−Complete CoNP−Complete

unary NLogSpace−Complete

Presburger
binary

NP−Complete CoNP−Complete
unary

functional
k∏

ZSum-WA

Expr

binary
PSpace−Complete

unary

k, |E|
binary NP−Complete CoNP−Complete

unary NLogSpace−Complete

Presburger
binary

PSpace−Complete
unary
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