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Chapter 1

Introduction

1.1 Formal verification

Computer systems pervaded almost every area of our society. Some of them, called
reactive systems [HP84], operate as a controller that maintains an interaction with their
environment. In particular, they appear in software and hardware critical applications.
Think about anti-lock braking system (ABS) of automotive, aircraft autopilots, railway
tra�c control, intelligent medical devices, or mass production micro-controllers. Any
flaw in such systems could lead to an economic disaster or even endanger human lives.
Unfortunately, such catastrophic scenarios happens, here are two recent examples:

• Governmental Australian Transport Safety Bureau, aviation safety investigations
& report published on December 2011[I]. Page vii: “While the aircraft was in cruise
at 37,000 ft, one of the aircraft’s three air data inertial reference units (ADIRUs)
started outputting intermittent, incorrect values (spikes) on all flight parameters to
other aircraft systems.” Page 54: “Although the unit had transmitted a significant
amount of incorrect data to other systems, and was associated with several fault
messages, extensive testing did not identify any problems relevant to the occur-
rence.”

• Governmental US Federal Aviation Administration, airworthiness directives pub-
lished on May 2015[II]: “a Model 787 airplane that has been powered continuously
for 248 days can lose all alternating current (AC) electrical power due to the gen-
erator control units (GCUs) simultaneously going into failsafe mode”

Although it is fair to say that aeronautics has made considerable progress in terms of
safety thanks to the expertise of the crews and the use of secondary system devices,
avoidable errors still exist. In addition, the maintenance task imposed by the US Federal
Aviation Administration consisting to reboot periodically each Boeing 787 should never
come as a satisfactory answer to a design flaw.

Reactive systems exhibit several characteristics like resources limitation, real-time re-
sponsiveness, concurrency that make them di�cult to implement correctly. The common
techniques in development are based on tests, simulations and declarative assertions. Of
course this approach can quickly reveal errors, and thus are crucial for industrial in-
terests. Nevertheless, as noticed by the Australian Transport Safety Bureau report, it
cannot show the absence of errors, and that is why it is insu�cient for critical applica-
tions. To ensure the design of reactive systems that are dependable, safe and e�cient,
researchers and industrials have advocated the use of so-called formal methods, that rely
on mathematical models to express precisely and analyze the behaviors of those systems.
Model-checking is one of the most popular techniques that have proved to be successful
for companies like Airbus, Amazon, Facebook, Microsoft, NASA, and have been stan-
dardized by industries with the following specification languages: Sugar (IBM), ForSpec
(Intel), CBV (Motorola/Freescale), e (Verisity/Cadence), OVA (Synopsys/Accelera) as
reported in [YPA06]. In contrast to theorem proving assistants where the system and
its validation are built together, model-checking algorithms are applied on a preexisting
model o�ering a modular approach.

Let us explain the model-checking approach to formal verification. Given a pro-
gram together with a set of properties to be verified, called specification, the model-
checking problem asks to determine whether all the possible behaviors of the program
fulfill the specification. The approach consists of first to abstract the program into
a trace-formalism suitable for algorithmic treatment, and also to translate the specifi-
cation property into a logical language that permits to express properties about such
traces. Then, model-checking algorithms check if the set of feasible traces of the model

[I]
https://www.atsb.gov.au/media/3532398/ao2008070.pdf

[II]
https://www.govinfo.gov/content/pkg/FR-2015-05-01/pdf/2015-10066.pdf

https://www.atsb.gov.au/media/3532398/ao2008070.pdf
https://www.govinfo.gov/content/pkg/FR-2015-05-01/pdf/2015-10066.pdf
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is included into the set of traces allowed by the specification. In the case of a negative
answer, there must exist an erroneous program trace which contradicts the specification,
and model-checking algorithm are able then to exhibit a counter-example useful for the
designer to correct the bug.

The computer science community acknowledged with ACM Turing awards, three con-
tributions that belongs to the field of the model-checking: In 1976, to Scott and Rabin
for their paper on automata theory [RS59]; in 1996 to Pnueli for his work on temporal
logic as a seminal specification language for reactive systems [Pnu77]; in 2007 shared
by Clarke, Emerson and Sifakis for their contributions to develop model-checking algo-
rithms [CE81, QS82]. Following those theoretical contributions, algorithms and tools
have been developed [KVW00, CGP01, BK08] and today, model-checking is a standard
approach for program verification routinely used in industry. Most of the past contribu-
tion in model-checking has been done in the so-called Boolean setting in which, a trace
either satisfies or violates the specification. More recently quantitative extensions of the
model-checking to framework have been investigated.

In the next sections, we first review the automata theory approach of the well known
Boolean setting and its generalization to the quantitative setting. Then we present how
this thesis contributes to expand the quantitative aspects of model-checking.

1.2 Automata approach

Computer aided-verification aims at using formal methods based on mathematical
models to exhaustively and automatically verify the correctness of computer systems,
with respect to given specifications. The traditional approach to verification, as proposed
by Clarke and Emerson in [CE81], is purely Boolean. Indeed, the specifications express
valid behaviors of the systems to be verified and thus induce a partition between correct
and incorrect traces. So, the model-checking techniques rely on finite presentations of
functions from feasible traces to {0, 1} where a trace is denoted by a sequence of events
called a word. The formalism that contributed to the rise of model-checking is finite state
automata well known for its versatileness trough closure properties, a canonical presen-
tation, and equivalences to many other presentations including logics. In the automata
theory approach, the model-checking problem reduce to the language inclusion as: Does
the set of feasible traces defined by the automaton P that models the program is included
in the set of traces allowed defined by the automaton S that models the specification.
Formally, the language inclusion asks whether ’u u œ L(P ) ∆ u œ L(S). Simpler
problems have also been consider, the language equivalence: ’u u œ L(P ) … u œ L(S),
the language universality: ’u u œ L(P ), and the language emptiness: ÷u u œ L(P ) are
the classical decision problems in automata theory.

Quantitative languages of finite words naturally generalize Boolean languages as a
more realistic framework in which traces are mapped to a rational value. This approach
have applications in modeling resource-consumption (e.g. battery, memory) for embedded
systems. Note that, the classical decision problems extend to the quantitative setting in
the expected way. The inclusion problem asks whether two given quantitative languages
f, g satisfy f Æ g, i.e. if the domain inclusion dom(f) ™ dom(g) holds and in that case if
f(u) Æ g(u) holds for all u œ dom(f). The equivalence problem asks whether f(u) Æ g(u)
and g(u) Æ f(u). The universality problem asks whether ‹ Æ f(u) for all u œ dom(f),
where ‹ is a numerical threshold. And dually, the emptiness problem asks whether
‹ Æ f(u) for some u œ dom(f).

The quantitative languages (a.k.a. formal series) have been studied for long in the
context of automata theory [Sch61, Cho77a, Ber77]. More recently, what we call now
weighted automata, received a particular attention from the verification community for
their application in modeling system quality [DKV09, CDH10b], thus lifting classical
Boolean verification problems to a quantitative setting. Nowadays, weighted automata is
a classical formalism to define function form word to a numerical value as a generalization
of finite automata where transitions are labeled by weights in addition to the input letter.
In the general definition, a weighted automaton comes with two operators: (1) one to
aggregate the weights along a run to provide the quality of a particular trace and (2)
another operator to combine the values obtained form all accepting runs in order to
speak about the whole system. In the realm of the model-checking, the most popular
instantiations of operators ((2), (1)) for weighted automata are (max, +) and dually
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(min, +), denoted respectively WA
max
sum and WA

min
sum.

In order to highlight similarities and di�erences between the two settings, the table
below shows two implementations (using finite automata and WA

max
sum) where the model-

checking problem asks whether every input word for which “bad” letters b are not read
twice in a row necessarily ends with a “awesome” letter a. We can see that the Boolean
setting allows us to handle regular behaviors of event appearance and to count them up
to a constant threshold. In addition, the quantitative setting permits to count arbitrary
many events. Note that, applications with the need of measuring the performances or
consumption of resources, require a model that manipulates unbounded values.

Boolean : �ú
æ {0, 1} Quantitative : �ú

æ Z
finite automata WA

max
sum

Prog. P : u ‘æ

I
0 if bb appears in u

1 otherwise
P : u ‘æ

I
length of the longest
block of b in u

a

b

a

b

a, ba, b | 0 a, b | 0

a | 0

b | 1

a | 0

a, b | 0

a

Spec. S : u ‘æ

I
1 if u ends with a

0 otherwise
S : u ‘æ

I
2 if u ends with a

0 otherwise

b

a

b

a

b | ≠2

b | 0 b | 0
a | 2

b | ≠2

a | 0

Verif. L(P )
?
™ L(S) ’u œ �ú P (u)

?
Æ S(u)

P (b) = 1
S(b) = 0

J
counter-example

P (bbba) = 3
S(bbba) = 2

J
counter-example

1.3 Contributions

This section summarizes our contributions. The published versions of the content
of this thesis are available on the institutional repository[III] of the Université libre de
Bruxelles as well as the database[IV] of the computer science bibliography DBLP.

1.3.1 Weighted formalisms

The WA
max
sum formalism have been introduced as a generalization of finite automata

where a given input word u is associated to the maximal value amongst all sums of
weights from accepting runs on u. This instance of weighted automata o�er few closure
under of arithmetical operations due to the “arbitrarily” fixed operators + and max.
Moreover, basic and desirable decision problems for WA

max
sum are already known to be

undecidable [Kro94, ABK11]. As a contribution, we introduce a general and as expressive
as possible, framework for quantitative verification that retains decidability for model-
checking algorithm.

The expression formalism given in [CDE+10] defines quantitative languages by com-
bining the values computed by deterministic sum-automata (i.e. automata that sum
integer weighted along its runs) with the operators +, ≠, max and min. Consider two
deterministic sum-automata, A which counts the occurrence number of a in the input
word and B counts the number of b. The expression E = max{A, B} defines the function
which maps the occurrence number of the most present letter from a given word over

[III]
In French, https://difusion.ulb.ac.be/vufind/Author/Home?author=Mazzocchi,%20Nicolas

[IV]
In English, https://dblp.uni-trier.de/pers/hd/m/Mazzocchi:Nicolas

https://difusion.ulb.ac.be/vufind/Author/Home?author=Mazzocchi,%20Nicolas
https://dblp.uni-trier.de/pers/hd/m/Mazzocchi:Nicolas
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the alphabet {a, b}. Inspired by this model, we introduce in Chapter 3 an expression
formalism that mixes Presburger arithmetic and automata to define quantitative lan-
guages i.e. functions from words to integers. In particular, our formalism is closed under
all Presburger definable functions and we show as a result that its is decidable for the
classical verification problems.

Monolithic expressions with Presburger combinators

In Section 3.1, we notice that instead of deterministic weighted automata as in [CDE+10],
taking unambiguous sum-automata (i.e. automata for which every input has at most one
accepting run) does not change the complexity of the classical decision problems but
strictly extend the expressive power of the expressions. To combine these atoms, the
monolithic expressions that we defined, are allowed to use what we call Presburger combi-
nators instead of just fixed operators in [CDE+10]. Presburger combinators are any func-
tion definable in existential Presburger arithmetic. For instance, the combinator “greater
then else” which takes integers n, m, x, y as inputs and computes if n > m then x
else y is definable by the formula Ïgte(n, m, x, y) = (n > m · r = x) ‚ (n Æ m · r = y)
where r is the result variable. The function max{x, y} is definable by Ïlte(x, y, x, y)
and the absolute value function abs(x) is definable by max{x, ≠x}. Clearly, Monolithic
expressions are strictly more expressive than expressions of [CDE+10],

The largest known class of WA
max
sum enjoying decidability is that of finitely ambiguous

WA
max
sum (which is expressively equivalent to the class of finite-valued WA

max
sum for which all

the accepting executions over the same input run yields a constant number of di�erent
values). Let us precisely state our results. Since any finitely ambiguous WA

max
sum can be

decomposed into a finite union of unambiguous WA
max
sum [SdS10, FGR14], our formalism

captures finitely ambiguous WA
max
sum automata (by using the Presburger combinator max).

We show that all classical decision problems can be solved in polynomial space, match-
ing the complexity for [CDE+10] provide in [Vel12]. It is important to mention that this
complexity result cannot be directly obtained from [Vel12] which is on infinite words
with mean-payo� automata as atoms (hence the value of an infinite word is prefix-
independent). Instead, we rely on techniques developed in Chapter 2 in the context
of Parikh automata [KR03] for which we provide new complexity results.

Expressions with iterated sum

The previous expressions are monolithic in the sense that first, some values are com-
puted by weighted automata applied on the whole input word, and once the computation
done these values are combined using Presburger combinators. It is not possible to iter-
ate expressions on factors of the input word, and to aggregate all the values computed on
these factors, for instance by a sum operation. The basic operator for iteration is that of
Kleene star (extended to quantitative languages), which we call more explicitly iterated-
sum. It has already been defined in [DKV09], and its unambiguous version considered
in [AFR14] to obtain an expression formalism equivalent to unambiguous weighted au-
tomata.

We investigate in Section 3.2 the extension of monolithic expressions with unam-
biguous iterated-sum, which we just call iterated-sum in the paper. The idea is, given
an expression E which applies on a domain D, the expression E~ is defined only on
words u that can be uniquely decomposed (hence the name unambiguous) into factors
u = u1u2 . . . un such that ui œ D, and the value of u is then

q
n

i=1 E(ui). For example,
the function that takes u1 •u2 •· · ·•uk• and returns in how many factors ui the number of
a is greater than the number of b, is definable by the expression E =

!
Âgte(A, B, 1, 0)

"~

where A and B are sum-automata that read words of the form u• and count the number
of a and b respectively. Note that, in this example, the subexpression Âgte(A, B, 1, 0)
that reads words of the form u• is applied arbitrarily many time and induces an unique
decomposition of the input word.

Unfortunately, we show that such an extension yields undecidability (if two or more
iterated sum operations occur in parallel, i.e. not nested, in the expression). The unde-
cidability is caused by the fact that sub-expressions E~ may decompose the input word
in di�erent ways. We therefore define the class of so called synchronized expressions
with iterated-sum, which forbids this behavior. We show that while being expressive
(for instance, they can define quantitative languages beyond finitely ambiguous WA

max
sum

or WA
min
sum), decidability is recovered.

The proof goes via a new model automata introduced in Section 3.3, called weighted
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chop automata, that “chop” the input word into smaller factors, recursively apply smaller
chop automata on the factors to compute their values, which are then aggregated by
taking their sum. In their synchronized version, we show decidability for chop automata.

1.3.2 Robustness

The model-checking has proved to be successful applications for system verification
with respect to a given specification. However, this approach does not provide informa-
tion about “how much correct or incorrect” is the system with respect to its intended
specification. This is an important limitation for applications with error-prone systems
(as noisy sensors) and imprecise specifications (as statistical observations). As a con-
tribution, we rely on the quantitative framework to lift the verification algorithms to a
version robust against disturbances.

In particular, we specify distances between finite words, using the notion of cost
functions. A cost function assigns a non-negative rational cost to each pair of words
(u1, u2), modeling the cost of rewriting u1 into u2. By bounding the costs of rewritings,
it models how words can be transformed. As a consequence, a neighborhood can be
defined for each word, assuming that the cost of “rewriting” a word u back to itself is 0.

A well known formalism to define word-to-word relations is that of transducers which
generalizes finite automata over two tapes (expected/perturbed) by allowing them to
behave independently [Ber79], i.e. without letter-to-letter synchronization. In order to
model cost functions, we use weighted transducers with non-negative weights [DKV09]
along with an aggregator (e.g. sum) that combines the cost of each individual rewriting
of the transducer into an overall cost between the input word and its perturbed version.
Here, the value associated by the transducer to rewrite a word into another, denotes the
cost of noise induced by this rewriting.

Motivation and objectives

We now provide motivating examples for the cost functions that can be specified by
weighted transducers. Consider the transducer T of Figure 1.1. It allows one to rewrite
the letter a1 into a1 (at cost 0), and the letter a2 into either a2 (at cost 0) or b (at cost
1). Additionally, rewritings with cost 1 are possible only in the middle state in order to
model “bursty” errors, which is common in many situations.

a1 a1, 0

a2 a2, 0

a1 a1, 0

a2 b, 1

a1 a1, 0

a2 b, 1

a1 a1, 0

a2 a2, 0

a1 a1, 0

a2 a2, 0

Figure 1.1: A weighted-transducer over alphabet � = {a1, a2, b}

So, the transducer models all possible words uÕ that a given input word u can be
rewritten into. As an example, the word u = a1a2a2a2 into uÕ = a1bba2 through transi-
tions that rewrite the first two occurrences of a2 into b. At the same time, the transducer
forbids certain rewritings. For instance, the word u above cannot be rewritten into the
word uÕÕ = bba2a1 since the rewrite from an a1 into a b or an a2 into an a1 is clearly
disallowed by the transducer T in Figure 1.1. While, the transducer T specifies the cost
for individual rewritings through its transitions, we define the cost of rewriting the en-
tire word u into another uÕ by additionally specifying an aggregator function. Since the
transducers are not necessarily deterministic, the strategy to choose one value from all
possible rewritings in to choose the minimum value. We consider in our work several
aggregation functions.
Discounted sum: Given a fixed rational discount factor ⁄ œ Q fl (0, 1), the discounted

sum aggregator computes the cost of rewriting a word u into another word uÕ asq
n

i=1 ⁄(i≠1)ci, wherein n is the size of a run through the transducer and ci is the
cost associated with the ith transition.

Mean: The mean aggregator computes the average cost: 1
n

q
n

i=1 ci for n > 0.
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Sum : The sum aggregator computes:
q

n

i=1 ci for n > 0.

Returning to the example, the sum aggregator of rewriting a1a2a2a2 into a1bba2 is 2, for
the discounted sum it is 3

4 with discount factor 1
2 , and for the mean it is 1

2 .
This approach considers a transducer model that can allow for insertions of new

letters, deletion of letters, transpositions and arbitrary substitutions of one letter by a
finite word. As a consequence, many commonly encountered types of distance metrics
between words such as the Cantor distance, and the Levenstein (a.k.a. edit) distance,
and the average mismatch, can be modeled as weighted transducers.

Robust verification

Thanks to our error models, we are able to provide a robust version of the model-
checking where not only the set of system traces, but the “neighborhood” of system
traces instead, which is a superset obtained by adding some disturbance. Formally,
consider a distance d defined by a weighted-transducer with some aggregator function,
we define the neighborhood of a language N up to the given error threshold ‹ œ QØ0 as
N‹ = {uÕ : ÷u u œ N · d(u, uÕ) Æ ‹}.

For a set of words N , a specification L, and an error threshold ‹, we consider the
following robustness problems:
Robust inclusion: Does the language robustly satisfies its specification?

Given N, ‹ and L, check whether N‹ ™ L.
Threshold synthesis: How large the error can be while keeping the specification satisfy?

Given N, L, find the largest threshold ‹ such that N‹ ™ L.
Robust kernel synthesis: For a fixed error bound, what is the robust part of the language

that satisfy specification?
Given N, ‹, L, synthesize the largest subset N Õ

™ N such that N Õ
‹

™ L. Note that
the language N Õ is not necessary regular.

Consider the transducer of Figure 1.1 using the sum as aggregator and let � = {a1, a2, b}

its alphabet. We take L as the set of words which do not have bbb as a sub-word. Now,
any word of the form (a1a2)ú is ‹-robust for any threshold ‹ since the letter a1 is not
rewritten by the transducer T . Such questions are tackled using the robust inclusion
problem. On the other hand, let us choose a word u œ a2a2a2(aú

1). It is ‹-robust for all
the thresholds ‹ Æ 2 but not for ‹ Ø 3. This is determined using the threshold synthesis
problem. For all ‹ Ø 3, the set of ‹-robust words in N = �ú is (a1 + a1a2 + a1a2a2)ú,
and for ‹ Æ 2, any word in �ú is ‹-robust. Such questions are solved using the robust
kernel synthesis problem.

As a result, we show that the robust inclusion problem N‹ ™ L is solvable in poly-
nomial time when the language N is given by a non-deterministic finite automaton, and
L is given by a deterministic finite automaton, and the weighted-transducer defining
the noise is also given as input. To obtain this result, we show that we can e�ectively
compute in polynomial time the largest threshold ‹ as defined before, thus solving the
threshold synthesis problem. This result holds for the three measures Sum, DSum and
Mean. For Sum, we show that the robust kernel is regular and computable and testing its
non-emptiness can be done with a polynomial space memory. For Mean, we show that
the robust kernel is not regular in general, and its non-emptiness is undecidable. For
DSum, we leave those questions partially open. We conjecture that the robust kernel is
non-regular in general. Finally, we provide su�cient conditions under which the robust
kernel becomes regular for both Mean and DSum measures.

Case Studies

The algorithms to synthesize robustness thresholds have been implemented by the
researchers Sankaranarayanan and Trivedi from the university Colorado Boulder. They
reported some experiments on two application cases including modeling human control
failures and approximate recognition of type-1 diabetes from blood sugar level swings.[V]

Properties are often specified by engineers based on nominal or expected outcomes
of a system. However, in engineering practice, it is quite common to state properties
that are conservative, i.e. a violation of a property may not always be problematic.
Consider for instance a common time reactivity property for an automotive transmission
system: Whenever the engine revolutions per minute (RPM) goes above 9000 RPMs and

[V]
Publicly available dataset of blood glucose values for people with type-1 diabetes



Section 3 – Contributions 7

the vehicle is in gear Gi where i œ {1, 2, 3, 4}, the vehicle will shift to the next higher
gear Gi+1 within 25 cycles. The property has “magic numbers” that include the 9000
RPM and the 25 cycle limits. These are often conservative guesses derived by engineers
to account for a large number of unknown and unmodeled factors that may a�ect the
possibility of short term and long term engine damage. As a consequence, engineers
may accept a design that violates this property but satisfies a weaker property wherein
whenever the engine RPM goes above 9050, the design will shift to the next higher gear
within 30 cycles in the worst case.

In other situations, the property is well-established and has little leeway due to the
inherent noise of the data obtained from sensors. In such scenarios, engineers would like a
built-in tolerance wherein the system must actually satisfy a stronger property. Consider
for instance the following clinical property on insulin pump: If the blood glucose (BG)
levels of a patient fall below 3.9 mmol/L, the pump must be shutdown within 10 minutes.
In such an example, this requirement is absolutely critical for patient’s safety and well-
being. As a consequence, engineers would prefer a design that shuts down a pump within
5 minutes rather than a design that shuts it down in 8 minutes. Also, engineers may
raise the shutdown limit to 4.2 mmol/L rather than 3.9 mmol/L.

These examples highlight that not all violations of a specification should be treated
equally. The flexibility in specifications and the approximate nature of the models, lead
us to seek quantitative and robust versions of model-checking techniques.

1.3.3 Structural properties

The definition of automata subclasses with particular properties or with better al-
gorithmic tractability is an important aspect of automata theory. For example, the
language inclusion problem can be decided in polynomial time for any finite automata
with a constant ambiguity [SI85] while this complexity cannot be achieved in the general
non-deterministic case [SM73, Koz77]. As contribution, we introduce a specification logic
to define structural properties for popular models of automata.

Here, we mean automata in the general sense of finite state models processing finite
words. This includes what we call automata with outputs, which may also produce output
values in a fixed monoid (D, ü, 0). In such an automaton, the transitions are extended
with an (output) value in D, and the value of an accepting path is the sum (for ü) of
all the values occurring along its transitions. Automata over finite words in �ú and with
outputs in D define subsets of �ú

◊D as follows: to any input word u œ �ú, we associate
the set of values of all the accepting paths on u. For example, transducers are automata
with outputs in a free monoid: they process input words and produce output words and
therefore define binary relations of finite words [Ber79].

Logics to express patterns

We observed that subclasses of automata with outputs are in general characterized
by structural patterns and the recognition of such patterns often share similar proof
techniques. So, we introduce a generic logic, denoted PL[O] for “pattern logic”, to express
such a properties in a given monoid (D, ü, 0). In particular, PL is parameterized by O,
which is the set of predicates talking about the output values computed with ü.

We focus on three particular instances of automata with outputs: finite automata
(which can be seen as automata with outputs in a trivial monoid with a single element),
transducers (automata with outputs in a free monoid), and sum-automata (automata
with outputs in (Z, +, 0)). For each of them, we define particular logics, respectively
called PLnfa, PLtrans and PLsum to express properties of automata with outputs in these
particular monoids. Formulas in these logics have the following form:

÷fi1 : p1
u1|v1
≠≠≠æ q1, . . . , ÷fin : pn

un|vn
≠≠≠≠æ qn, C

where the fii are path variables, the pi, qi are state variables, the ui are (input) word
variables and the vi are output value variables interpreted with respect to corresponding
monoid. The sub-formula C is a quantifier free Boolean combination of predicates talking
about states, paths, input words and output values. Such a formula expresses the fact
that there exists a path fi1 from some state p1 to some state q1, over some input word
u1, producing some value v1, some path fi2 and so on, such that they all satisfy the
constraints in C. In the three logics, C can also express path constraints such as path
equality, input constraints using the word prefix relation, the length of those words, as
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well as membership to a finite language. Finally, C can contain state constraints such as
state equality, and whether a state is initial or final.

The predicates we consider for the output values depend on the monoids. For trans-
ducers, output words can be compared with the non-prefix relation (and by derivation
”=), a predicate which cannot be negated (otherwise model-checking becomes undecid-
able), and can also be compared with respect to their length, and membership to a finite
language can be tested. For sum-automata, the output values can be compared with Æ

(and by derivation =, ”=, <). As an example, a transducer (resp. sum-automaton) is not
functional i� it satisfies the following PLtrans-formula (resp. PLsum-formula):

÷fi1 : p1
u|v1
≠≠≠æ q1, ÷fi2 : p2

u|v2
≠≠≠æ q2, v1 ”= v2 ·

I
init(p1) · final(q1)
init(p2) · final(q2)

As a result we show that deciding whether a given automaton satisfies a given formula
is PSpace-C for the three logics. When the formula is fixed, the model-checking problem
becomes NLogSpace-C for PLnfa and PLtrans, and NP-C for PLsum. If output values
can only be compared via disequality ”= (which cannot be negated), then PLsum admits
NLogSpace-C model-checking as well.

Subclasses defined by pattern

Many decidable results of finite automata do not carry over to transducers and
weighted automata. In order to recover decidability or just to define subclasses rele-
vant to particular applications, some restrictions have been defined in the literature.

For transducers, the inclusion problem is undecidable [Gri68], but decidable for finite-
valued transducers [Web93], that is transducers which associate a bounded number of
outputs for any input. Another well-known subclass is that of the determinizable trans-
ducers [BCPS03], defining sequential functions of words. Finite-valuedness and deter-
minizability are two properties decidable in polynomial time.

For addition systems, i.e. automata that sum integer weights along its runs, which
define relations from words to integers, properties such as functionality, determiniz-
ability, and valuedness bounded by some fixed natural k are decidable in polynomial
time [FGR14, FGR15, DJRV17].

In our experience, it is quite often the case that deciding a subclass goes in two steps:
(1) define a characterization of the subclass through a “simple” pattern, (2) show how
to decide the existence of a such a pattern. For instance, the determinizable transducers
have been characterized via the so called twinning property [BC02, Cho77b, WK95] which,
loosely speaking, asks that the output words produced by any two di�erent paths on input
words of the form uvn cannot di�er boundlessly when n grows, with a suitable definition
of “di�er”. Quite often, the most di�cult part is step (1) and step (2) is technical but
less di�cult to achieve, as long as we do not seek for optimal complexity bounds (by this
we mean that polynomial time is good enough, and obtaining the best polynomial degree
is not the objective). We even noticed that in transducer theory, even though step (2)
share common techniques (reduction to emptiness of reversal-bounded counter machines
for instance), the algorithms are often ad-hoc to the particular subclass considered.

The last contribution of this thesis introduce logics tailored to particular monoids,
as a common tool for step (2). More precisely, the PL allows us to express subclass
characterized through a structural pattern in a generic way and provides automatically a
decision procedure for the subclass membership. Here is a non-exhaustive list of criteria
each expressible in our logics and for which the NLogSpace complexity of deciding the
subclasses membership comes as a direct consequence of our results:
For finite automata: ambiguity bounded by a given natural k, finite ambiguity [WS91],

polynomial ambiguity [WS91], exponential ambiguity.

For transducer: determinizability [AM03, BC02, BCPS03, Cho77b, CS86, WK95], func-
tionality [BC02, BCPS03], degree of sequentiality bounded by a given natural
k [DJRV17], multi-sequentiality [CS86, JF18], valuedness bounded by a given nat-
ural k [GI83], finite valuedness [SdS08, Web93].

For addition sytems: functionality [FGR15], valuedness bounded by a given natural
k [FGR14], degree sequentiality bounded by a given natural k [DJRV17].
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1.4 Preliminaries

In this section we introduce the basics.

Sets, monoids and numbers

Let I, J be two sets. We write I fi J , I ‡ J , I fl J , I \ J , I ◊ J and I respectively
the union, the disjoint union, the intersection, the di�erence, the Cartesian product of
I, J and the complement of I. We denote by card(I) the cardinal of I i.e. the number
of elements which belongs to it. In particular, we refer to ? as the empty set.

The sets of numerical values Z, N, Q denote respectively the set of integers, the set of
non-negative integers and the set of rational numbers. We write Z”=0, N ”=0, Q”=0 to refer
the same sets from which 0 has been removed. We use the standard symbols +, ≠, ◊, ÷

and Æ to refer respectively to the sum, minus, product, Euclidean division operations
and the order predicate over numerical values. For i, j œ Q the interval {i, . . . , j} refer
to the set of values {k œ Q : i Æ k Æ j}. The rest of the Euclidean division i mod j is
defined as r = i ≠ mj for some m œ Z. The absolute value of n œ Q, denoted abs(n), is
defined as n if n Æ 0 otherwise it is ≠n.

A monoid is a tuple (D, §, 1) where D is a set of elements, the binary function
§ : D ◊ D æ D is an associative operation for which 1 œ D is neutral. Formally,
(x § y) § z = x § (y § z) and 1 § x = x § 1 = x for all x, y, z œ D. The rational
subsets of a monoid (D, §, 1) is the smallest set that contains every finite subset of D
and is closed under union, § and (Kleene) starring, i.e. for all rational sets A, B we have
A fi B, A § B = {a § b : a œ A · b œ B}, and Aú =

t+Œ
i=0

k
i

j=1 A rational as well.
A semi-ring is a tuple (D, ü, §, 0, 1) where (D, §, 1) and (D, ü, 0) are monoids, the

function ü is commutative, § distribute over ü and 0 is absorbing for §. Formally,
for all x, y, z œ D we have the commutativity x ü y = y ü x, the left distributivity
x § (y ü z) = (x § y) ü (x § z) and the right one (x ü y) § z = (x § z) ü (y § z),
finally the absorption 0 § x = x § 0 = 0.

1.4.1 Words, languages and decision problems

An alphabet is a set of elements called symbol or letter . A word over an alphabet �, is
a (partial) function from N ”=0 to �. We write a1a2 . . . an for defining the word u : i ‘æ ai

where i is called a position belonging to {1, . . . , n} that is, the domain of u. The set of all
finite words over � is denoted �ú and we refer the empty word by Á which is the function
of domain ?. The length of a word u, denoted |u|, is the cardinal of its domain. For all
a œ �, we also write |u|a for the number of occurrences of the letter a in u i.e. the number
of position that have a as image by u. In particular |Á| = 0. The concatenation of two
words a1 . . . an and b1 . . . bm is the word a1 . . . anb1 . . . bm. Also, un

œ �ú is nth iterated
concatenation of the word u, inductively defined by u0 = Á and un = uun≠1. The prefix
binary predicate ı holds for two word u1, u2 œ �ú if u2 = u1u for some u œ �ú.

A (Boolean) language is a set of words. In particular, the empty language corresponds
to the empty set ?. The word concatenation can be naturally extended to languages
as L1 · L2 = {u1 · u2 : u1 œ L1 · u2 œ L2}. As for words, we write Ln to refer the nth

iterated concatenation of L. The star (unary) operator is defined as the upper closure
Lú =

tŒ
i=0 Ln. Note the consistency with the set of all words over � denoted �ú. The

set of languages over � that are said to be regular is the smallest set that contains the
empty-language ?, the language singleton {a} for each a œ � and it is closed under
union, concatenation and star operations. Note that, regular languages over � coincide
with the rational subsets of the free monoid (�ú, ·, Á). A quantitative language[VI] is a
partial function f : �ú

æ Z, whose e�ective domain is denoted by dom(f). E.g. consider
the quantitative language mapping any word u œ �ú to the number of occurrences |u|a

of some symbol a œ � in u. Note that, a Boolean language L can be seen as a total
function f : �ú

æ Z such that f(u) = 1 if u œ L otherwise f(u) = 0.
The classical language decision problems are the following:

• The inclusion problem asks whether two given f, g : �ú
æ Z satisfy f Æ g, i.e.

whether dom(f) ™ dom(g) and in that case whether f(u) Æ g(u) for all u œ dom(f).
• The equivalence problem asks whether f Æ g and g Æ f .
• The universality problem asks, given some threshold value ‹ œ Z and a language

f : �ú
æ Z, whether ‹ Æ f(u) for all u œ dom(f).

[VI]
Also called formal series in [DKV09]
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• The emptiness problem asks whether ‹ Æ f(u) for some u œ dom(f).
For the case of Boolean languages, the only relevant threshold value is ‹ = 1.

1.4.2 Automata formalisms

We introduce a general formalism, with transitions labeled by a given monoid, from
which all our automata models are derived. Transition systems are parameterized by
a monoid and any execution is associated with an element of the monoid, obtained by
aggregating (thanks to §) the values met along the transitions.

Definition ≠ labeled transition system

A transition system G is a tuple (Q, QI , QF , �) where Q is the set of states,
QI ™ Q the set of initial states, QF ™ Q the set of final states and � ™ Q ◊ Q
is the transition relation. A labeling of G over a monoid (D, §, 1) is a relation
⁄ ™ � ◊ D.

A run Í is a sequence of transitions t1 . . . tn œ �ú for which there exists q0, . . . , qn œ Q
called the visited states of Í such that ti = (qi≠1, qi) for all i œ {1, . . . , n}. We refer to
the starting state q0 as ÍÙ and its ending state qn by ÍÛ. A cycle is a run for which if
ÍÙ = ÍÛ. If no state is visited twice i.e. i ”= j implies that qi ”= qj then Í is said to be a
simple or equivalently cycle free. If in addition the run Í = t1 . . . tn is a cycle and t2 . . . tn

is cycle free, then Í is said to be a simple cycle. Note that the empty run Á does not have
starting and ending states, and thus it is not a cycle.

The transition relation ⁄ can be inductively extended to support runs by ⁄ : Á ‘æ {1}

and ⁄ : tÍ ‘æ {¸t § ¸Í : (t, ¸t) œ ⁄ · (Í, ¸Í) œ ⁄}. For convenience, we denote by SI
u
≠æ SF

the set of runs from some state of SI ™ Q to some state of SF ™ Q and labeled by u œ D.

SI
u
≠æ SF

def= {Í œ �+ : ÍÙ
œ SI · ÍÛ

œ SF · u œ ⁄(Í)} fi {Á : SI fl SF ”= ? · u = 1}

We may forget the label constraint and write SI ≠æ SF to refer to
t

uœD
SI

u
≠æ SF . The run

Í is said to be initial if Í œ QI ≠æ Q, final if Í œ Q ≠æ QF and accepting if it is both. We
denote by AccRunG the set of accepting runs of G and AccRunG(u) the set of accepting
runs of G on u.

A state q œ Q is said to be reachable from qÕ
œ Q if {qÕ

} ≠æ {q} is not empty. A state
q œ Q is said to be accessible if there exists an initial run which visits it, i.e. if QI ≠æ {q}

is not empty. Dually, a state q œ Q is said to be co-accessible if there exists a final run
which starts from it, i.e. if {q} ≠æ QF is not empty. A transition system is said to be trim
if all states are both accessible and co-accessible i.e. (QI ≠æ {q}) ”= ? · ({q} ≠æ QF ) ”= ?
for all q œ Q.

Since the representation size of G depends on its monoid, we prefer to define it once
instantiated[VII].
Definition ≠ regular automata

A finite regular automaton A (NFA for short) over the alphabet � is defined as a
transition system labeled by the free monoid (�ú, ·, Á) such that ⁄ ™ �◊(� fi {Á}).
It is represented by the tuple (Q, QI , QF , �) where the relation � ™ Q◊(� fi {Á})◊
Q denotes the set of transitions labeled over �.

Semantically, an automaton A denotes the language L(A) defined as {u œ �ú :
AccRunA(u) ”= ?}. The representation size of A is defined by |A| = card(Q)3card(�).
We say that A is deterministic (DFA for short) if QI is a singleton and � is a function from
Q ◊ (� fi {Á}) to Q. For k œ N ”=0, A is said to be k-unambiguous (k-UFA for short) if for
every input word there exists at most k accepting runs, formally card(AccRunA(u)) Æ k
for all u œ �ú. We prefer to call an automaton unambiguous (UFA for short) when it
is 1-ambiguous and finitely unambiguous when it is k-ambiguous for some k. Note that,
the ambiguity is a weaker restriction than determinism, that asks for uniform bound on
the degree of non-determinism.

[VII]
Basically the representation size will be card(Q) + card(�) ◊ µ where µ is the “biggest” possible

labeling



Section 4 – Preliminaries

—

“

—

“

11

Definition ≠ regular automata with outputs

An automaton with outputs A over a monoid (D, §, 1) is a tuple (Q, QI , QF , �, ⁄)
where (Q, QI , QF , �) is an NFA called the underlying automaton, the function
⁄ : � æ D maps each transition to an output element.[VIII]

Given a run Í = t1 . . . tn œ �ú of A, the output of Í is defined by ⁄(Í) =
k

n

i=1 ⁄(ti)
if n > 0, and by 1 if n = 0. We write AccRunA(u, v) to refer to the set of accepting runs
on u outputting v i.e. {Í : Í œ QI

u
≠æ QF · ⁄(Í) = v}.

Semantically, an automaton with outputs A denotes an input/output relation [[A]]
defined as {(u, v) : AccRunA(u, v) ”= ?}. The domain and the range of A are respectively
the projection dom(A) = {u : (u, v) œ [[A]]} on the inputs and R(A) = {v : (u, v) œ [[A]]}
on the outputs. We define the notion of valuedness that refer to a bound on the cardinal
of the sets associated to any input word. An automaton with outputs A is said to be
k-valued if for all input word u œ dom(A), the set {v : (u, v) œ [[A]]} has cardinality at
most k. Note that it does not imply that there are at most k accepting runs since, two
distinct runs can output the same value. However, any k-ambiguous automaton with
output is k-valued. We call an automaton functional when it is 1-valued[IX] and finitely
valued when it is k-valued for some k. Let � = {⁄(t) œ D : t œ �}. The representation
size of an automaton with outputs is |A| = card(Q)3card(�)¸µ where ¸ = card(�) is
the number of distinct output labels and µ = max{|“| : “ œ �} is the maximal size of
labels of A[X].

In this thesis, we mostly consider three instances of automata with outputs. First,
transducers are automata with outputs in the free monoid (�ú, ·, Á), they define relations
from �ú to �ú and the size of an output word is its length. We refer the reader for
instance to [BCPS03] for a definition of finite transducers. Secondly, sum-automata of
dimension d œ N ”=0, are automata with outputs in the monoid (Zd, +Zd , 0Zd) and define
relations from �ú to Zd. We consider two representation size of an integer value v, with a
binary encoding the size is log2(v +1) while in unary it is v +1. Finally, remark that NFA

compiles in the definition of automata with outputs in a trivial monoid. In particular,
the synchronized product is also well defined for NFA.

Product construction

The product construction of n automata Ai = (Qi, Ii, Fi, �i, ⁄i) with outputs in
(D, §, 1), denoted A1 ◊ · · · ◊ An, is the automaton A = (Q, I, F, �, ⁄) over the monoid
(Dn, §Dn , 1Dn), where §Dn is the component-wise §. The three sets of states are sets of
tuples respectively Q = Q1◊· · ·◊Qn and I = I1◊· · ·◊In as well as F = F1◊· · ·◊Fn. The
transition relation is defined by � = {(q, a, p) œ Q ◊ (� fi {Á} ◊ Q :

w
n

i=1(q[i], a, p[i]) œ

�i} and ⁄ : (q1, . . . , qn), a, (qÕ
1, . . . , qÕ

n
) ‘æ ⁄1(q1, a, qÕ

1), . . . , ⁄n(qn, a, qÕ
n
) œ Dn for each

transition (qi, a, qÕ
i
) of Ai.

Definition ≠ weighted automata

A weighted automaton W over the alphabet � and with outputs in the semi-ring
(D, ü, §, 0, 1) is defined as an automaton with outputs over the monoid (D, §, 1).

A weighted automaton di�er from automaton with outputs in its semantics, because
it aggregates all values associated to an input thanks to its (associative) second operator
ü. In particular, a weighted automaton W denotes a (partial) function[XI] which is
the quantitative language [[W ]] : dom(A) æ D defined by u ‘æ

m
{v œ R(u)}.[XII] Note

that, the semantics of automata with outputs and weighted automata coincide for they
unambiguous fragment i.e. when automata admit at most one accepting run on any input

[VIII]
Sometimes, initial and final weight functions are considered in the literature to assign values distinct

from 1 to Á, which can also be done by directly providing the set of outputs assigned to Á and considering

it as a special case.
[IX]

If A is functional when [[A]] is a function
[X]

For implementation matter, some of our algorithms require a distinct memorization of outputs and

transitions where each transition only carry a key to refer its corresponding outputs in a hash table that

memorize all distinct outputs once.
[XI]

Sometimes in the literature, the semantics of weighted automata are lifted to total functions by

assigning 0 for all input out of the domain.
[XII]

Since ü is associative, the order in which the values from accepting runs are combined does not

matter.
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word. Indeed, the ü operation is not used to compute the output value of a word which,
in this case, corresponds exactly to the value of the unique accepting run. Formally, let
(D, ü, §, 0, 1) be a semi-ring and consider A as an automaton with outputs in (D, §, 1).
If A is unambiguous, then [[A]] is a function and thus [[A]] : u ‘æ R(u) =

m
{v œ R(u)}.

In this thesis, we only consider the tropical semi-rings as instances of weighted au-
tomata. Let the two pairs of operators (min, +) and (max, +) define the classes of
weighted automata WA

min
sum and WA

max
sum respectively. We will be clear when the domain

of weights is N and when it is Z. We refer the reader for instance to [DKV09] for a
definition of finite weighted automata.



I
Weighted formalisms
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Chapter 2

Semi-linearity

Model-checking belongs to the main techniques in program verification and its classi-
cal approach is elegantly and e�ciently supported by regular automata-theoretic meth-
ods [CGP01, KVW00]. However, its extension to the quantitative setting requires to
capture situations beyond regularity. In this chapter, we consider a model of automata
that allows us to deal with unbounded numerical values and so, to provide us with a tool
that manipulates an infinite-state space.

Semi-linear sets are the rational subsets of the monoid (Zd, +, 0) with d œ N ”=0 as the
considered dimension. Parikh investigated these sets to highlight properties on context-
free[I] languages [Par66], todays known as Parikh’s theorem, and in turn brings decid-
ability results for the emptiness problem. Furthermore, semi-linearity is supported by
logical formalisms, in particular, [GS66] proved that the semi-linear sets coincide with
the relations definable in the Presburger arithmetic [Pre29].

We first review some results on semi-linearity as the foundation of our technical con-
tributions and then we present the formalism of Parikh automata [KR03], which extends
regular automata by counting the use of each transition and constraining this occur-
rence values to belong to a given semi-linear set. Note that, we provide the descriptive
complexity of the emptiness problem for Parikh automata as key results for proofs in
Chapters 3 and 7.

2.1 Representations of semi-linear sets

Semi-linear sets of numbers are finite unions of ultimately periodic sets and can be
presented by a finite set of vectors. In [GS64], authors prove that the class of semi-linear
sets is exactly the class of relations definable in the Presburger arithmetic. In this section
we present some representations of semi-linear sets and their properties.

Definition ≠ linear & semi-linear sets

Consider d œ N to be the dimension. A set S ™ Zd is linear if there exists b œ Zd

called the base vector and p1, . . . , pn œ Zd called the period vectors such that
S = {b +

q
n

i=1 xipi : x1, . . . , xn œ N}. A set is semi-linear if it is a finite union of
linear sets.

The most natural representation of linear sets is by providing directly its base and
its periods. Given d œ N, we denote by LinSet (b | P ) the linear set of vector base b œ Zd

and with vector periods belonging to P µ Zd. We define ||S|| as the maximal absolute
value appearing in dimensions of vectors of P and b. The representation size of a linear
set S of dimension d is defined by |S| = (card(P ) + 1) ◊ d ◊ log2(||S|| + 1).

Let A, B be two semi-linear sets. The sum A+B is defined by {x+y : x œ A·y œ B}.
The sum of A iterated n times is inductively defined by 0Zd if n = 0 and

q
n

i=1 A. The
starring of A, denoted Aú, is the union of all finite iteration of A defined by

t+Œ
i=0

q
i

j=1 A.

Fact 2.1.1 ≠ Closures of semi-linear sets

The class of semi-linear sets are close under union, sum and starring.

Proof The closure under union is trivial from the definition. Let d œ N ”=0 be
the dimensions for our semi-linear sets. Consider A, B ™ Zd defined by A =t

k

i=0 LinSet (a0,i | {a1,i, . . . , an,i}) and B =
t

¸

j=0 LinSet (b0,j | {b1,j , . . . , bm,j}). Then

[I]
Context-free languages are definable by regular automata with a stack pushdown, raising a more

expressive class of languages than the regular one.



16

—

“

—

“

Chapter 2 – Semi-linearity

⌥

the sum A + B can be presented as follows.

A + B =
k€

i=0

¸€

j=0
LinSet (a0,i + b0,j | {a1,i, . . . , an,i} fi {b1,j , . . . , bm,j})

Finally, for the starring operation, we note that (A fi B)ú = Aú + Bú for all A, B ™ Z
by commutativity of the sum and union. So, we only need to provide the closure under
starring for linear sets which consists to the following.

LinSet (a0,i | {a1,i, . . . , an,i})ú = {0Zd} fi LinSet (a0,i | {a0,i} fi {a1,i, . . . , an,i})

An important property of linear sets is that they admit a bound on the number of
periods as formalized in the following statement.

Claim 2.1.2 ≠ Carathéodory’s property from [ES06]

Let L = LinSet (b | P ) be a linear set with k = card(P ) as cardinal of P and
µ = ||P || as the maximal absolute value appearing in dimensions of vectors of P .
Then there exists P1, . . . , Pm such that L =

t
m

i=1 LinSet (b | Pi) where m Æ 2k

and Pi ™ P and card(Pi) Æ d log2(2µk + 1).

2.1.1 Presburger formula

The Presburger arithmetic have been introduced in [Pre29] where the author proves
the decidability of this theory using quantifier removing method. Originally, Presburger
formula were defined as first order theory over naturals augmented with the ordering
predicate Æ and the sum function +. Here, for simplification of proofs, variables are
interpreted over integers and we only consider the existential fragment. Both of those
restrictions are w.l.o.g. since integers can be encoded with naturals and universal quan-
tifiers can be removed as in [Pre29].

Definition ≠ Existential Presburger formula

An existential Presburger formula is built over terms on the signature {0, 1, +}fiX
where X is a countable set of variables that take value in Z. So, it is a term
generated by the following grammar:

Õ ::= t Æ t | ÷x Õ | Õ · Õ | Õ ‚ Õ

where the variable x œ X is quantified at most once[II]. A formula is said to be
weak if the predicate ”= is used instead of Æ:

Õ ::= t ”= t | ÷x Õ | Õ · Õ | Õ ‚ Õ

For readability, we introduce the common macros. First, we extend the defini-
tion of existential Presburger formula with syntactic sugar by the strict order predicate
(t1 < t2) © (t1 + 1 Æ t2), the disequality predicate (t1 ”= t2) © (t1 < t2 ‚ t2 < t1), the
di�erence of terms (t1 Æ t2 ≠ t) © (t1 + t Æ t2) and the fixed multiplication of terms
(t1 Æ t2 + ◊c(t)) © (÷x t1 Æ t2 +

q
c

i=1 x · x = t). Similarly, we extend the weak frag-
ment with the di�erence of terms (t1 ”= t2 ≠ t) © (t1 + t ”= t2) and the fixed multiplication
of terms (t1 ”= t2 + ◊c(t)) © (÷x t1 ”= t2 +

q
c

i=1 x · x = t).
Note that, in opposition to the equality ct = t + · · · + t which can create an exponen-

tial blow-up, our macro for fixed multiplication introduces an extra variable existentially
quantified which create only a polynomial blow-up. We can also highlight the equiva-
lence (t1 Æ t2) © (÷x t1 = t2 + x · 0 Æ x) which shows that the ordering predicate is not
necessary when the variables are interpreted over naturals but here, they are interpreted
over integers and in particular, the sign predicate cannot be expressed.

Let Õ be an existential Presburger formula over the set of variables X. We define
representation of |Õ| as the number of symbol to write it, i.e. the size of its syntactic tree.
We denote by Free(Õ) = {x1, . . . , xd} the linearly ordered set of variables that appear in

[II]
This assumption is not necessary but permits to simplify formula rewriting
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Õ but are not quantified. We call d = card(Free(Õ)) the dimension of Õ. A valuation
‹ is a function from X to Z which can be inductively extended to terms by ‹(0) = 0,
‹(1) = 1 and ‹(t1 + t2) = ‹(t1) + ‹(t2). The formula Õ defines a set of integer vectors
denoted [[Õ]] such that:

[[t1 Æ t2]] = {‹ : ‹(t1) Æ ‹(t2)} [[Õ1 · Õ2]] = [[Õ1]] fl [[Õ2]]

[[t1 ”= t2]] = {‹ : ‹(t1) ”= ‹(t2)} [[Õ1 ‚ Õ2]] = [[Õ1]] fi [[Õ2]]

[[÷xi Œ ]] = [[Œ ]]

A formula Õ is said to be satisfiable if [[Õ]] ”= ?. Given v œ Zd, we define Õ(v) as the
formula Õ where the free variable have been instantiated by v. We write v |= Õ instead
of [[Õ(v)]] ”= ? i.e. to express that Õ holds when the vector of free variables is interpreted
with v. Scarpellini shows in Theorem 6.A from [Sca84] that satisfiability requires to
interpret variables with values at most exponential in |Õ|.

Fact 2.1.3 ≠ Scarpellini’s Theorem from [Sca84]

Let Õ be an existential Presburger of dimension d. If [[Õ]] ”= ? then there exists
v œ Zd such that v |= Õ and ||v|| is at most exponential in |Õ|.

2.1.2 Parikh image of regular languages

Semi-linear sets were originally introduced in [Par66] to provide a characterization to
the appearance of letters in words of a given language. This abstraction, called Parikh
image, preserves the emptiness of a languages.

Definition ≠ Parikh image

Let � = {a1, . . . , an} be a totally ordered alphabet and u œ �ú. The
Parikh image[III]of u with respect to �, denoted P�(u), is defined as the vector
(|u|a1 , . . . , |u|an). The Parikh image of the language L ™ �ú is P�(L) = {P�(u) :
u œ L}.

Any regular language has a semi-linear Parikh image, this result is known as Parikh’s
Theorem [Par66][IV]. The representation size of the semi-linear set which denotes the
Parikh image of the language given by a NFA has been provided in [Lin10]. The proof
of Theorem 7.3.1. of [Lin10] contains many technicalities which raise a long and complex
method. The following statement presents a new simple approach but provides a coarser
bound.
Lemma 2.1.4

Let A be an NFA over �. The Parikh image over � of L(A) is semi-linear. It
can be represented a semi-linear set L =

t
m

i=1 LinSet (bi | Pi) where m is doubly
exponential[V]in |A| and ||bi||, card(Pi), ||Pi|| are polynomial in |A|.

Proof Let A = (Q, QI , QF , �) be an NFA over �. The proof goes as follow: (i) we
provide a semi-linear set S which denotes exactly the Parikh image of L(A), then (ii) we
use the Carathéodory property to get the bounds of the statement.
(i) We show here the equality P�(L(A)) = S with S defined below where for all run Í
labeled by u, we denote by P�(Í) the Parikh image of u.

S =
€

ÍœAccRun(A)
|Í|Æcard(�)2

LinSet
A
P�(Í) |

I
P�(c) :

fi
I

c œ SimpleCycles(A)

’t œ � |c|t > 0 =∆ |Í|t > 0

JB

We prove first that the Parikh image P�(L(A)) belongs to the set S. Let us take v œ S
and show that there exists a word u œ L(A) such that P�(u) = v. This is trivial since

[III]
Also called commutative image in the literature.

[IV]
In fact, Parikh’s Theorem is more general and proves that context-free languages have a semi-linear

Parikh image.
[V]

The doubly exponential upper bound for m is not optimal (see [Lin10])
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v is generated from an accepting run Í of A and the iteration of some cycles that use at
least one transition visited by Í. In fact, any transition of the iterated cycles is visited
by Í.
Now, we prove that the set S belongs to the Parikh image P�(L(A)). Consider u œ

L(A). Hence, there exists an accepting run Í of A such that P�(u) = P�(Í). Let
�Í = {t1, . . . , tm} ™ � be the transitions visited by Í and C = SimpleCycle(A) fl �ú

Í
be

the set of simple cycles over transitions used by Í. Hence Í is of the form Í1t1 . . . Ímtm.
For all 1 Æ i Æ m, we denote by ni be the number of, non-necessarily simple, cycles in Íi.
We also define n =

q
m

i=1 ni. By induction on n, we show that there exists an accepting
run Í̂ such that the two following properties hold:

1. P�(Í) ™ P�(Í̂) + P�(C)ú

2. P�(Í̂) + P�(C)ú
™ S

If n = 0 we trivially set Í̂ = Í. In fact |Í| Æ card(�)2 since m Æ card(�) and |Íiti| Æ

card(�) due to the absence of cycle in all Íi. In addition C ™ {c œ SimpleCycles(A) :
’t œ � |c|t > 0 =∆ |Í|t > 0} because for all t œ �Í we have |Í|t Ø 1. Thus
P�(Í) + P�(C)ú

™ S.
Otherwise n > 0 i.e. there is a cycle in some Íi. Note that, if a run admits a cycle then
it admits a simple one. Let Íi = ÍÕ

i
cÍÕÕ

i
where c is a simple cycle. In fact c œ C since

Í œ �ú
Í
. We compute Í̂ by applying the induction hypothesis on Í1t1 . . . ÍÕ

i
ÍÕÕ

i
ti . . . Ímtm.

P�(Í) = P�(Í1t1 . . . ÍÕ
i
ÍÕÕ

i
ti . . . Ímtm) + P�(c)

™ P�(Í̂) + P�(C)ú + P�(c) by hypothesis (1)
™ P�(Í̂) + P�(C)ú since c œ C

™ S by hypothesis (2)

Finally P�(u) œ S since P�(u) = P�(Í). This prove the semi-linearity of the Parikh
image of L(A).
(ii) In order to get the statement, we apply Claim 2.1.2 on linear sets that define S. Let
¸ = card(�) and m = card(�). Note that card(P�(SimpleCycles(A))) Æ (m + 1)¸.
We obtain an union of s Æ mm

22(m+1)¸ linear sets of the form Li = LinSet (bi | Pi) where
||bi|| Æ m2 and ||Pi|| Æ m and card(Pi) Æ ¸ log2(2m(m + 1)¸ + 1) Æ 2¸2 log2(2m + 3).

2.2 Parikh automata

Parikh automata, introduced in [KR03], extend finite automata with integer coun-
ters that can only be incremented, decremented but never tested for zero. For accep-
tance, the accumulated values are constrained to belong to a semi-linear set, given by an
existential Presburger formula. We also consider a fragment where the formula is weak,
yielding the class of weak Parikh automata.

Definition ≠ Parikh automata

A Parikh automaton (NPA for short) of dimension d œ N over some alphabet � is a
tuple (A, ⁄, Õ) where A = (Q, QI , QF , �) is an NFA called the underlying NFA, its
transitions are labeled by ⁄ : � æ Zd over the monoid (Zd, +Zd , 0Zd) and Õ is an
existential Presburger formula with d free variables called acceptance constraint.

Let P = (A, ⁄, Õ) be an NPA where A = (Q, QI , QF , �) and ⁄ : � ‘æ Zd. The
language defined by P is the set of words which admit an accepting run in A associated,
by ⁄, to a weight vector that satisfies the acceptance constraint Õ. Formally L(P ) = {u œ

�ú : ÷v œ Zd AccRunP (u, v)·v |= Õ} and R(P ) = {v œ Zd : ÷u œ �ú AccRunP (u, v)·v |=
Õ}. Let � = {⁄(t) œ Zd : t œ �} be the set of weight vectors. The representation size of
P is defined as |P | = |A|d¸ log2(µ + 1)|Õ| where ¸ = card(�) is the number of distinct
weight vectors and µ = ||�|| is the maximal absolute value appearing on weight vectors.
If numeric values of weight vectors are given in unary, the parameter µ becomes fixed and
we have that |P | = |A|d¸|Õ|. A NPA is said to be weak when its acceptance constraint is
a weak existential Presburger formula.

2.2.1 Intersection and non-emptiness problems

The language of Parikh automata can be abstracted with Parikh image in order to
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decide the emptiness problem which asks whether the language is empty. The NP mem-
bership of the non-emptiness problem is proved, in Proposition III.2 of [FL15]. Given
an NPA, the approach consists of constructing in linear time a Presburger formula that
denotes the Parikh image of the language of the underlying NFA [VSS05] from which, we
are able to represent the set of values that the acceptance constraint can deal with. Fi-
nally, the problem reduces to check for the satisfiability of both conditions, being feasible
by the underlying NFA and being accepted by the constraint. In addition, we highlight
a fragment for which the non-emptiness is NLogSpace.

Theorem 2.2.1 ≠ NPA non-emptiness

The non-emptiness problem for NPA is in NP. It is in NLogSpace when the
set of weight vectors and the acceptance constraint[VI]are fixed (in particular, for
unary encoding of numeric values).

In fact, we are able to obtain a similar statement, but where the formula is logarithmic
in the number of transitions. In the following, we use the same proof techniques as used
in [FL15].

Lemma 2.2.2

Let P = (A, ⁄, Õ) be a Parikh automaton of dimension d, with m transitions and
¸ distinct weight vectors which belong to {≠µ, . . . , ≠1, 0, 1, . . . , µ}

d. One can
construct an existential Presburger formula Œ of the form

x
s

i=1 Œi for which there
exists v œ N such that v |= Œ i� there exists u œ L(P ) with |u| = v. Furthermore
|Œi| is polynomial in ¸, d, |Õ| and logarithmic in m, µ for all 1 Æ i Æ s.

Proof Let P = (A, ⁄, Õ) be a NPA of dimension d where A = (Q, QI , QF , �). We
define the data set D = {a1, . . . , a¸} as the linearly ordered set of weight vectors of P
i.e. D = {⁄(t) œ Zd : t œ �}. This proof highlights an existential Presburger formula
Œ(x) which holds i� L(P ) ”= ?. The construction relies on PD(R(P )) ™ N¸ the Parikh
image of R(P ) with respect to D. We recall that · œ PD(R(P )) i� there exists an
accepting run Í of P which visits exactly · [i] transitions weighted by ai for all 1 Æ i Æ ¸.
Intuitively, the language non-emptiness L(P ) ”= ? comes as a consequence of the range
non-emptiness R(P ) ”= ? and the fact that Presburger arithmetic permits to recover
the weighted vector of an accepting run from · . In the sequel, (i) we describe how to
construct an existential Presburger formula Ã which defines P�(R(P )) and (ii) from Ã
we define the existential Presburger formula Œ(x) which holds for v œ N i� there exists
an accepting run of P of length v.
(i) By Lemma 2.1.4 there exist s œ N linear sets Li = LinSet (bi | Pi) ™ Z¸

such that P�(R(P )) =
t

s

i=1 Li. Each set Li can be represented by the following
existential Presburger formula:

Ãi(·) = (÷xp)
pœPi

S

U· = bi +
ÿ

pœPi

◊p(xp)

T

V

Note that bi and Pi depends on P only. Also Lemma 2.1.4 ensures that for all 1 Æ i Æ s
we have ||bi|| Æ m2 and ||Pi|| Æ m and card(Pi) Æ 2¸2 log2(2m + 3). Thanks to the
operator twice function ◊2, constants can be encoded in binary. So |Ãi| = O(4¸card(Pi))
is polynomial in ¸ and logarithmic in m. Let Ã (·) =

x
s

i=1 Ãi(·) then for all v œ N¸ we
have that v |= Ã i� v œ P�(R(P )).
(ii) Now, we explain how Ã and the acceptance constraint of P are glued together.
Recall that � = {a1, . . . , a¸} where each ai œ Zd is a weight vectors of P . The value
of each dimension 1 Æ k Æ d at the end of a run can be computed from · œ N¸ by
ck =

q
¸

j=1 · [j] ◊ proj
k
(aj) and the total number of transitions taken is x =

q
¸

j=1 · [j].
Then, we define the formula Œi as follows:

Œi(x) = ÷·, ÷c

C
fi

I
Ãi(·) · Õ(c) · x =

q
¸

j=1 · [j]
w

d

k=1 c[k] =
q

¸

j=1 ◊aj [k](· [j])

D

[VI]
A fixed acceptance constraint implies by definition a fixed dimension.
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We have that |Œi| = O(|Ãi| + |Õ| + ¸ + d¸ log2(||�||)). Note that µ = ||�|| is the maximal
absolute value appearing on weight vectors of P , it can be encoded in binary thanks to
the twice function ◊2. Thus |Œi| is polynomial in ¸, d, |Õ| and logarithmic in m, µ. To
conclude Œ(x) =

x
s

i=1 Œi(x).
From the previous lemma, we are able to provide an upper bound on the complexity

to decide the language non-emptiness of the intersection of n NPA. It was shown to be
PSpace-C in [FL15] but here we have a more precise statement used in the sequel.

Lemma 2.2.3

Let P1, . . . , Pk be k NPA over � each of dimension d with at most m transitions,
at most ¸ weight vectors that belong to {≠µ, . . . , ≠1, 0, 1, . . . , µ}

d and with an
acceptance constraint of size at most c. The non-emptiness of

u
k

i=1 L(Pi) can be
decided within space polynomial in k, ¸, d, c and logarithmic in m, µ.

⌥

Proof For all 1 Æ i Æ k, let Pi = (Ai, Õi) be a Parikh automaton of dimension d over �
with at most m transitions, where Ai = (Qi, Ii, Fi, �i) is labeled by ⁄i, admits at most
¸ weight vectors belonging to {≠µ, . . . , ≠1, 0, 1, . . . , µ}

d and |Õi| Æ c.
We construct P an NPA such that L(P ) = ? i�

u
k

i=1 L(Pi) ”= ? which simulates each Pi

by performing their transitions sequentially to keep a set of weight vectors of polynomial
size. Note that, due to this sequentiality P is not build in the way to have

u
k

i=1 L(Pi)
as language, only the non-emptiness matter here. Formally, its set of states is Q =
{1, . . . , k} ◊ Q1 ◊ · · · ◊ Qk, its set of initial states is I = {1} ◊ I1 ◊ · · · ◊ Ik, its set of
final states is F = {1} ◊ F1 ◊ · · · ◊ Fk. Given a œ �, consider for each Ai a transition
qi

a
≠æ qÕ

i
œ �i with vi = ⁄i(pi, a, qi) œ Zd. The transition relation � of P contains t1 =

(1, q1, . . . , qk) æ (2, qÕ
1, q2, . . . , qk) and . . . and tk = (k, qÕ

1, . . . , qÕ
k≠1, qk) æ (1, qÕ

1, . . . , qÕ
k
)

with ⁄(ti) = {0}
d◊(i≠1)

◊ {vi} ◊ {0}
d◊(k≠i). The input letter on transitions of P does

not matter here. Finally, its acceptance constraint Õ is defined by Õ(x1, . . . , xk) =w
k

i=1 Õi(xi). Note that P has a dimension kd, it admits at most km3 transitions, at most
k¸ distinct weight vectors which all belong to {≠µ, . . . , ≠1, 0, 1, . . . , µ}

kd and |Õ| Æ ck.
In order to determine whether L(P ) = ?, we consider the Presburger formula Œ using
Lemma 2.2.2 on P . We get Œ(x) =

x
s

i=1 Œi(x) where each |Œi| is also is polynomial in
k, ¸, d, c and logarithmic in m, µ. Recall that for all v œ N, there exists u œ L(P ) with
|u| = v i� v |= Œ . By Fact 2.1.3, there exists a bound n exponential in |Œi| such that Œi is
satisfiable i� it is satisfiable for some value in {0, . . . , n} µ N. Note that n is exponential
in k, ¸, d, c and polynomial in m, µ. Hence, the language L(P ) is non-empty i� it accepts
a witness word of length at most n.
Now we describe an algorithm which decides the emptiness of L(P ) using a working
space logarithmic in n. The algorithm does not construct explicitly P but guesses non-
deterministically on-the-fly a witness of length at most n and controls its length using a
binary counter. The end of the run is also non-deterministically guessed and its accep-
tance constraint holds if Õ (explicitly constructed) is satisfied by the accumulated weights.
We show that, given v = (v1, . . . , vdk) such that vi Æ µn, deciding whether v |= Õ can be
done using a space logarithmic in n. Let ÕÕ(x1, . . . , xdk) = Õ(x1, . . . , xk) ·

w
k

i=1 vi = xi.
The satisfiability of ÕÕ in NP thanks to [Sca84]. Since |ÕÕ

| Æ |Õ| + k +
q

k

i=1 log(µn) due
to binary encoding of numbers in the formula thanks to the twice function ◊2, we get
an algorithm logarithmic in n.

From Lemma 2.2.3, we get the NLogSpace membership for the restricted non-
emptiness of NPA when the set of weight vectors and the acceptance constraint as stated
by Theorem 2.2.1. The following result, already given by Proposition III.3 of [FL15],
also comes as a direct consequence.

Corollary 2.2.4 ≠ NPA intersection problem

Given k NPA P1, . . . , Pk, deciding whether
u

k

i=1 L(Pi) = ? is in PSpace.

A reader familiar with results on the Presburger logic could see that requiring a
constant acceptance constraint in Theorem 2.2.1 is not a necessary condition. In fact,
Scarpellini shows in Theorem 6.B of [Sca84] that satisfiability of existential Presburger
formula with a fixed number of quantifiers (and thus without succinct constant multi-
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plication ◊c) can be decided in NLogSpace. We conjecture that “non-emptiness prob-
lem for NPA where number of used variables and set of weight vectors are fixed is in
NLogSpace”.

In the next subsection, we show that the weakness restriction of NPA on the accep-
tance constraint permits to relax the condition on the set of weight vectors while keeping
an NLogSpace complexity for the non-emptiness.

2.2.2 Weak Parikh automata

The emptiness problem for Parikh automata have been previously treated. In partic-
ular, Theorem 2.2.1 provides an NLogSpace algorithm for deciding the non-emptiness
problem for automata with a constant set of weight vectors and a constant acceptance
constraint. In fact, to obtain NLogSpace the assumption on the set of weight vec-
tors is not necessary in the case of weak Parikh automata. Here, we provide another
NLogSpace algorithm for non-emptiness of weak Parikh automata (over an arbitrary
set of weight vectors) with a constant acceptance constraint.

The restriction to use only predicates ”= in the acceptance constraint is major in the
way a run can be evaluated. Intuitively, checking the distinctness of two integers is easier
than checking the ordering in the sense that it does not require the entire knowledge of
the values. This fact is formalized by the following lemma.

Lemma 2.2.5

Let N œ N. For all x, y œ N such that ≠N Æ x, y Æ N we have x ”= y i� there
exists 0 Æ z Æ

!
2 ln(2N)

"2 such that x ”© y mod z.

⌥

Proof In this proof we denote by pn the nth prime number. Note that x ”= y i�
x + N ”= y + N and 0 Æ x + N, y + N Æ 2N . Since p1 ◊ · · · ◊ plog2(2N) Ø 2N ,
the Chinese Remainder Theorem states that any integers x œ {0, . . . , 2N} is uniquely
determined by the tuple (x1, . . . , xlog2(2N)) where x © xi mod pi for each i. Similarly,
with y and (y1, . . . , ylog2(2N)) such that y © yi mod pi for each i. So, x ”= y i� there
exists ¸ Æ log2(2N) such that x¸ ”© y¸ mod p¸. Thanks to Rosser’s theorem [Ros39],
p¸ < ¸ ln(¸) + 2¸ ln ln(¸) for ¸ > 3. To conclude, p¸ Æ

!
2 ln(2N)

"2.
By the use of Lemma 2.2.5 and the Chinese Remainder Theorem, we are now able

to check the acceptance constraint of weak NPA by first guessing for all literals which
remainder will di�er.
Theorem 2.2.6 ≠ weak NPA non-emptiness

The non-emptiness problem for weak NPA is in NP. It is in NLogSpace when
the acceptance constraint[VII]is constant.

Proof Let P = (A, Õ) be a weak Parikh automaton of constant dimension d where A =
(Q, I, F, �, ⁄) have weight vectors in {≠µ, . . . , 0, . . . , µ}

d
™ Zd and Õ is an acceptance

constraint of constant size. We provide an algorithm which decides whether L(P ) ”= ?
holds in NLogSpace. To do so, (i) we first make some assumptions on P to simplify
the proof and the notations. Then (ii) we show a small witness property on P which
states that the non-emptiness of L(P ) implies the existence of an accepting run with a
polynomial length and which satisfies the acceptance constraint. Finally (iii) we describe
a non-deterministic procedure that uses a logarithmic space.
(i) In this proof, we assume that the acceptance constraint Õ is of the form

w
d

i=1 xi ”= 0
where d is the dimension of P (it is constant as Õ has constant size at least d). We
prove now that this assumption is without loss of generality. Since the acceptance
constraint Õ is fixed, it can be transformed in disjunctive normal form and its quan-
tifiers can be removed[VIII]in constant space. In addition, the treated disjunct can be
non-deterministically guessed at the beginning for the NLogSpace procedure. So, the
acceptance constraint can be transformed into the form

w
k

i=1 –i,1x1 + · · · + –i,dxd ”= 0
where k and all –i,j are constant integers. To obtain the desired form, we need to change
the weight vectors of P . This modification of the labeling does not change the language
[VII]

A constant acceptance constant implies a constant dimension.
[VIII]

An algorithm for the quantifier removal of Presburger formula is given in [Coo72] for instance.
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of P nor the length of the minimal accepting run. Given a transition t œ � such that
⁄(t) = (v1, . . . , vd), we define ⁄Õ(t) = (vÕ

1, . . . , vÕ
k
) where vÕ

i
= –i,1v1 + · · · + –i,dvd. For

all 1 Æ i Æ k the function fi : (x1, . . . , xd) ‘æ –i,1x1 + · · · + –i,dxd has constant size since
the acceptance constraint is fixed. However, applying fi on any tuple (v1, . . . , vd) of the
transitions of P requires polynomial space. We explain in (iii) how it can be partially
computed to stay within logarithmic space.
(ii) In this paragraph, we show that if P (assumed to have an acceptance constraint
of the later form) admits an accepting run which satisfies the acceptance constraint,
then it admits such a run of polynomial length. Let Í be an accepting run of P such
that out(Í) |= Õ. Consider �Í ™ � be the set of transitions visited by Í and C =
SimpleCycles(A) fl �ú

Í
be the set of simple cycles over transitions used by Í.The run Í

can be decomposed into t1Í1 . . . tmÍm where {t1, . . . , tm} = �Í and Íi are intermediate
runs. Such decomposition ensures the possibility to attach any cycle of C to Í. We then
construct a shorter run from Í by iteratively removing simple cycles of all Íi. Formally,
from any run · we define the sequence ·0 = · and for all i > 0, ·i is equal to ·i≠1 in which
the first visited simple cycle is removed (the choice of the removed cycle is not important
but we set it to be the first to make this choice canonical). We let ·̂ the limit of this
sequence (which is reached in at most |· | iterations). We now let Í̂ = t1Í̂1 . . . tmÍ̂m.
By construction, Í̂ have a length at most card(�)2 and it is accepting since Í is so.
However, Í̂ may not satisfy the acceptance constraint Õ, i.e. , proj

i
(Í̂) = 0 for some i,

where proj
i

denotes the projection on the ith component. We claim that the satisfaction
of Õ can be restored by attaching d simple cycles of C to Í̂.

• For all 1 Æ i Æ d for which proj
i
(out(Í̂)) = 0, there exists a cycle denoted ci œ C

with proj
i
(out(ci)) ”= 0. Indeed, if proj

i
(out(c)) = 0 for all c œ C then in particu-

lar the cycles removed from Í to obtain Í̂ have all value zero on the ith component.
As a direct consequence proj

i
(Í̂) = proj

i
(Í) = 0 implying that out(Í) ”|= Õ which

contradicts the assumptions that Í |= Õ. Thus ci exists.
• For all 1 Æ i Æ d for which proj

i
(out(Í̂)) ”= 0, we pick some cycle ci œ C arbitrarily.

So, we get d simple cycles c1, . . . , cd œ C that not necessarily appear in Í but can
be attached to Í̂ and iterated. For instance, if c1 start with some transition tj , say
c1 = tjtÕ

1 . . . tÕ
k
tj , then it can be iterated in Í̂, i.e. for all ¸ œ N the sequence of transition

t1Í̂1 . . . Í̂j≠1(cj)kÍ̂j . . . tmÍ̂m is a accepting run of P .
Now, we have to determine how many times each cycle have to be iterated in order
to satisfy Õ. This is done by solving the system of disequations

w
d

j=1 proj
j
(out(Í̂) +

y1out(c1) + · · · + ydout(cd)) ”= 0. Using a pigeon hole argument, we can prove that a
solution exists by interpreting all yi in {0, . . . , d}. Formally, we show by induction on
0 Æ j Æ d how to determine the value —j œ {0, . . . , d} of the variable yj such that the
following holds.

1. proj
jÕ(out(Í̂) +

q
j

¸=1 —¸out(c¸)) ”= 0 for all 1 Æ jÕ
Æ j

2. proj
i
(out(Í̂)) ”= 0 ∆ proj

i
(out(Í̂) +

q
j

¸=1 —¸out(c¸)) ”= 0 for all 1 Æ i Æ d
For j = 0 both properties hold trivially. Assume by induction hypothesis that (1) and
(2) hold for some 0 Æ j < d. If proj

j+1(out(Í̂)) ”= 0 then (1) and (2) trivially extends to
j + 1 by taking —j+1 = 0. Otherwise, let v = out(Í̂) +

q
j

¸=1 —¸out(c¸) œ Zd.
• For each 1 Æ i Æ d such that proj

i
(out(cj+1)) ”= 0 the equation proj

i
(v +

yout(cj+1)) = 0 admits a unique non-negative solution for y. We consider at
most d equations so, there exists —j+1 œ {0, . . . , d} that dissatisfies them all.

• For each 1 Æ i Æ d such that proj
i
(out(cj+1)) = 0 we have that proj

i
(v +

—j+1out(cj+1)) = proj
i
(v) and then (1) and (2) trivially extends to j + 1.

This construction ensures the existence of an accepting run that satisfies Õ and have a
length bounded by N = (2dcard(�))2 since |Í̂| Æ card(�)2, |ci| Æ card(�) and —i Æ d
for all 1 Æ i Æ d.
(iii) As for Theorem 2.2.1, we provide an algorithm that guesses a witness in L(P ) of
length at most N . Since N is polynomial in |P |, the length can be memorized in binary
using a logarithmic space. However, the value of accumulated weights along such witness
grows with the maximal absolute value µ and thus can be µN , which is exponential in
|P |. Thanks to Lemma 2.2.5, for all 1 Æ i Æ d the constraint xi ”= 0 holds i� there exists
0 Æ ri Æ

!
2 ln(2µN)

"2 such that xi ”© 0 mod ri. Using a binary encoding, the numerical
value

!
2 ln(2µN)

"2 requires 2 log2
!
2 ln(2µN)

"
bits which is logarithmic in |P |. Hence

our NLogSpace algorithm has d counters, and starts by guessing each rest ri. Then it
searches a witness non-deterministically on-the-fly by controlling is length with a binary
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⌥

counter, performing transitions on-demand and updating each counter values modulo the
corresponding rest ri. More precisely, each function fi defined in paragraph (i) can be
partially computed by taking its arguments modulo ri and returning its result modulo ri

as well. Finally, for acceptance, it checks the satisfiability of Õ within logarithmic space.

In the previous subsection, we made the conjecture that only the number of used
variables in the acceptance constraint and vector weights need to be fixed to obtain
NLogSpace membership for the non-emptiness of NPA. This argument does not seem
to be su�cient in the case for weak NPA with unbounded vector weights. Formally, we
conjecture that “non-emptiness problem for weak NPA with number of used variables
fixed is hard for PTime”.

2.3 Future and related works

We investigated complexity results of the Parikh automata formalism, which is, an
extension of regular automata which semi-linearly constrains the number of times tran-
sitions occur.

Future works

However, we have not investigated the complexity of inclusion problem for Parikh au-
tomata. Klaedtke and Rueß shown that the universality is undecidable implying the same
results for equivalence and inclusion [KR03]. As proved by Cadhilac et al. in [CFM13],
the unambiguous fragment of Parikh automata has decidable inclusion problem. It is
known that the class of k-valued sum-automata, which associate at most k distinct val-
ues to each input word, coincide with the class of k-unambiguous one, which have at
most k accepting run for each input word [SdS10]. As a matter of fact, for a fixed k œ N,
we conjecture that the language inclusion problem for Parikh automata represented by
k-valued sum-automata with existential Presburger formula as acceptance constraint is
PSpace-C.

Related works

We considered a fragment of Parikh automata where the acceptance constraint is
restricted to weak existential Presburger formula, or equivalently ÷FO(Z, ”=, +). Dise-
quality tests have been considered in the context of vector addition systems with states
(VASS) where the authors investigate the one-counter case [ACP+19]. Note that, counter
values of VASS range over N. Now, consider the (unary) neg predicate defined for all
v œ Z such that neg(v) holds i� v < 0. Since our setting, ÷FO(Z, ”=, +), is not expressive
enough to define the predicate neg, the two formalisms are incomparable.

We recall that, the emptiness problem of Parikh automata with acceptance constraint
in ÷FO(Z, Æ, +) i.e. existential Presburger formula is in NP and it is in NLogSpace if
the acceptance constraint is in ÷FO(Z, ”=, +) i.e. weak existential Presburger formula.
The study of the emptiness problem of Parikh automata with acceptance constraint in
÷FO(Z, ”=, +, neg) may rely on proof techniques from [ACP+19].

Extensions of Parikh automata have been studied in the literature. On one hand,
the model of the underlying automata can be generalized. For instance, a�ne Parikh
automata [CFM12] generalize computation of the values of runs. Instead of taking an
automaton weighted by a vector of integers, authors considered an automaton weighted
by linear functions. So, an update does not add a constant vector but applies a linear
transformation. The downside is that this extension turns out to be quickly intractable
since emptiness is undecidable for deterministic a�ne Parikh automata. The one-counter
fragment seems to recover the decidability for emptiness, in fact, even when the updates
are computed by a polynomial [FGH13]. Another extension that generalizes the model
of the underlying automata is two-wayness, i.e. regular automata that are also allowed
to read the input word backward. In [FGM19] we prove that two-way Parikh automata
are undecidable for the emptiness problem, then we consider several su�cient conditions
under which decidability is recovered and we investigate how they change the complex-
ity. On the other hand, systems of quadratic Diophantine equation are decidable for
satisfiability [GS81] and generalize the model from semi-linear acceptance constraint to
non-linear one. This result has been used in automata theory to show decidability re-
sults of ratio-automata, i.e. two counters sum-automata that aggregate its values with a
Euclidean division [FGR15].
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Chapter 3

Weighted expressions with

semi-linear combinators

A popular formalism to define quantitative languages over integers is that of weighted
automata over the tropical semi-ring (Z, max, +) as defined in Section 1.4, called WA

max
sum

here after. We recall that, given an input word u, the image of u by a WA
max
sum is the

maximal value amongst all sums of weights from accepting runs on u. In particular,
the semantics of sum-automata and WA

max
sum coincide for their unambiguous fragment i.e.

for automata which admit at most one accepting run on any input word. However,
WA

max
sum have undecidable[IX] inclusion, equivalence and universality problems [Kro94],

even if they are linearly ambiguous i.e. for automata which have at most a linear num-
ber of accepting runs in the length of its input word [DGM17]. The most expressive
known class of WA

max
sum enjoying decidability for inclusion is that of finitely ambiguous

WA
max
sum [FGR14]. Moreover, WA

max
sum are not closed under simple operations such as mini-

mum or minus [KLMP04]. In particular, basic functions such as u ‘æ min(|u|a, |u|b) and
as a consequence u ‘æ abs(f(u) ≠ g(u)) are not definable by WA

max
sum, even if f, g are.

To cope with the expressiveness and undecidability issues, we introduce new weighted
formalisms which retain decidability for inclusion while being strictly more expressive
than finitely ambiguous WA

max
sum. The previous chapter presented the model of Parikh

automata that enrich the acceptance of a regular language with a Presburger constraint.
Now, we use the expressiveness of Presburger arithmetic to attach a mechanism that com-
bines outputs computed by a regular language in order to define quantitative languages
over integers.

3.1 Weighted expressions without iteration

We start our study of weighted expressions by a definition directly inspired by [CDE+10]
where deterministic sum-automata are used as building blocks of quantitative expres-
sions, called mean-payo� expressions[X] that can be inductively composed with functions
such as min, max, addition and minus. The universality, emptiness, inclusion and equiv-
alence problems for mean-payo� expressions are PSpace-C [Vel12]. We cast here mean-
payo� expressions to finite words, this gives what we call simple expressions. We prove
some results for simple expressions that motivate the need to have a more expressive
formalism.
Definition ≠ Simple expressions

A simple expression is a term generated by the following grammar, where D range
over deterministic sum-automata.

E ::= D | min(E1, E2) | max(E1, E2) | E1 + E2 | E1 ≠ E2

Any simple expression E defines a quantitative language [[E]] : �ú
æ Z on a domain

dom(E) is inductively defined as: If E is defined as a deterministic sum-automaton D then
dom(E) = dom(D) and for all u œ L(D) we have [[E]](w) = [[D]](w), where the semantics of
sum-automata has been defined in Section 1.4. Otherwise if E is of the form min(E1, E2)
then dom(E) = dom(E1) fl dom(E2) and [[E]](w) = min([[E1]](u), [[E2]](u)) holds for all
u œ dom(E). The semantics of max, + and ≠ are defined similarly. We say that two
simple expressions E1, E2 are equivalent if [[E1]] = [[E2]], in particular dom(E1) = dom(E2).

[IX]
The quantitative language emptiness problem is decidable for WAmax

sum.
[X]

Chatterjee et al. studied quantitative expressions on infinite words and the automata that they

consider are deterministic mean-payo� automata
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Now, we provide a criterion which shows that taking deterministic sum-automata as
atoms for simple expression is strictly less expressive than taking an unambiguous sum-
automata. A quantitative language f denotes a Lipschitz-continuous function if there
exists k œ N such that for all words u, v œ �ú, abs(f(u)≠f(v)) Æ k◊(|u| + |v| ≠ 2|u Ù v|)
where u Ù v denotes the longest common prefix of u and v.

Proposition 3.1.1

Any simple expression defines a Lipschitz continuous quantitative language.

⌥

Proof To prove that simple expressions define Lipschitz continuous functions, we need
to show that for all simple expression E, there exists k œ N such that for all words
u, v œ �ú:

abs(E(u) ≠ E(v)) Æ k (|u| + |v| ≠ |u Ù v|) (ı)

We reason by induction on the structure of the simple expressions.
First, let us consider the base case where E = D. As D is deterministic, the partial
sum on u = w · uÕ and v = w · vÕ on their common prefix w = u Ù v is equal in the two
cases to some value sw then on the two di�erent su�xes uÕ and vÕ, their sum may di�er
but at most by the following amount: |uÕ

| ◊ µ + |vÕ
| ◊ µ where µ is the maximum of

the set of absolute value of weights appearing in the automaton D. It is clear that the
inequality (ı) is true when we take k = µ.
Second, we consider the operation min for the inductive case, i.e. E = min(E1, E2). The
other operators are treated similarly. By induction hypothesis, E1 and E2 defines Lip-
schitz continuous functions, and we note k1 and k2 their respective Lipschitz constants.
We claim that k = max(k1, k2) is an adequate constant to show the Lipschitz continuity
of E that is:

’u, v œ �ú abs(min(E1, E2)(u) ≠ min(E1, E2)(v)) Æ k (|u| + |v| ≠ |u Ù v|)

Let d = (|u| + |v| ≠ |u Ù v|). Assuming that min(E1, E2)(u) = E1(u), min(E1, E2)(v) =
E2(v), and that E1(u) Ø E2(v). Thus abs(E1(u)≠E2(v)) = E1(u)≠E2(v). Furthermore
we have E1(u)≠E2(v) Æ E1(u)≠E1(v) Æ k1d Æ max(k1, k2)d. So finally, max(k1, k2)d =
kd. All the other cases are treated similarly.

Unambiguous sum-automata can define functions that are not Lipschitz continu-
ous, as for example the function “last block” which maps any word over the form
ank bank≠1b . . . ban0 to n0. Hence by the previous proposition, this function is not de-
finable by a simple expression. On the other hand, u ‘æ min{|u|a, |u|b} is definable by a
simple expression while it is not definable by any WA

max
sum [KLMP04], and then neither by

the subclass of unambiguous sum-automata. To summarize:

Proposition 3.1.2

There are quantitative languages that are definable by unambiguous sum-
automata and not by simple expressions. There are quantitative languages that
are definable by simple expressions but not by an unambiguous sum-automata.

3.1.1 Monolithic Expressions

To unleash the expressive power of simple expressions, we introduce monolithic ex-
pressions as a generalization. First, instead of deterministic sum-automata, we consider
unambiguous sum-automata as atoms. This extends their expressiveness beyond finite
valued WA

max
sum. Second, instead of considering a fixed (and arbitrary) set of operators,

we consider instead any Presburger combinator. We show that all the decision problems
are PSpace-C for monolithic expressions.

Any binary operation � : Z2
æ Z is extended to quantitative languages by f1 �

f2(u) = f1(u) � f2(u) if u œ dom(f1) fl dom(f2), otherwise it is undefined. Let Ï be a
existential Presburger formula of dimension d œ N ”=0. We say that Ï is functional [XI] if
for all v1, . . . , vd≠1 œ Z, there exists a unique vd œ Z such that v1, . . . , vd |= Ï. Hence,
Ï defines a total function from Zd≠1 to Z that we denote [[Ï]]. For convenience, we

[XI]
For readability, we use uppercase like Õ, Œ for existential Presburger formula and lowercase like Ï, Â

for function defined by existential Presburger formula
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call – = d ≠ 1 the arity of Ï and write Ï(x1, . . . , x–) to denote the unique z such that
Ï(x1, . . . , x–, z) holds. We say that a function f : Z–

æ Z is a Presburger combinator if
there exists a functional existential Presburger formula Ï such that f = [[Ï]].

Example 3.1.3

The following examples are Presburger combinators.
• The operator max which returns the maximum of values x1, . . . , xn œ Z is

definable by:

Ïmax © (
nfi

i=1
xi Æ z) · (

nfl

i=1
xi = z)

• The absolute value of x is defined by:

Ïabs © (x < 0 =∆ z = ≠x) · (x Ø 0 =∆ z = x)

• the 1-norm distance
q

n

i=1 abs(xi ≠ yi) between (x1, . . . , xn) and (y1, . . . , yn)
is defined by:

Ï1 © ÷z1 . . . ÷zn,
nfi

i=1
Ïabs(xi ≠ yi, zi) · z =

nÿ

i=1
zi

Definition ≠ Monolithic expressions

A monolithic expression is a term E generated by the following grammar, where W
range over unambiguous sum-automata and Ï range over Presburger combinators
of some arity n œ N.

E ::= W | Ï(E1, . . . , En)

The semantics [[E]] : �ú
æ Z of a monolithic expression E is defined inductively

and similarly as for simple expressions. For E of the form Ï(E1, . . . , En) we define
dom(E) =

u
n

i=1 dom(Ei) and [[E]](u) = [[Ï]]([[E1]](u), . . . , [[En]](u)) for all u œ dom(E). The
representation size |E| of a monolithic expression E is inductively defined as: If E is
defined as an unambiguous sum-automaton W then |E| = |W | otherwise if E is of the
form Ï(E1, . . . , En) then |E| = |Ï| +

q
n

i=1 |Ei|.

Example

As seen in Example 3.1.3, max is Presburger-definable by a formula Ïmax, it
is also the case for min(E1, . . . , En), E1 + E2, E1 ≠ E2 and the unary opera-
tion ≠E. For monolithic expressions E1, E2, the distance abs(E1 ≠ E2) : u œ

dom(E1) fl dom(E2) ‘æ abs(E1(u) ≠ E2(u)) is defined by the monolithic expres-
sion max(E1 ≠ E2, E2 ≠ E1). This function is not definable by a WA

max
sum even if

E1, E2 are given by unambiguous WA
max
sum. As a consequence of non-expressibility

by WA
max
sum of min{|u|a, |u|b} = abs(0 ≠ max{≠|u|a, ≠|u|b}) for all u [KLMP04].

Proposition 3.1.4

Monolithic expressions are strictly more expressive than finite valued WA
max
sum.

There are functions definable by monolithic expressions and not by a WA
max
sum.

Proof We show that monolithic expressions can express any quantitative language
definable by a k-valued WA

max
sum. It is known that any k-valued WA

max
sum A can be decomposed

into a disjoint union of k unambiguous sum-automata Ai [FGR14, KLMP04]. It is
tempting to think that A is equivalent to the monolithic expression max(A1, . . . , Ak).
However, this latter expression is defined only on

u
i
dom(Ai), which may be strictly

included in dom(A). Hence, we first complete any automaton Ai into some Bi such
that dom(Bi) = dom(A) and for all u œ dom(Bi) \ dom(Ai), [[Bi]](u) Æ [[A]](u). Let µ be
the smallest value occurring on the transitions of all the automata Ai. We construct
Bi as the disjoint union of Ai and some deterministic sum-automaton Ac

i
such that

dom(Ac

i
) = dom(A) \ dom(Ai) and [[Ac

i
]](u) = µ|u|. In fact, Ac

i
can be easily constructed

from any DFA recognizing dom(A) \ dom(Ai) and weight function associating µ to any
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transitions. Then, A is equivalent to the monolithic expression max(B1, . . . , Bk). For
the second statement, it is already the case for simple expressions by Proposition 3.1.2.

Our goal is now to show the decidability of the classical decision problems for quan-
titative languages defined by monolithic expressions. In fact every problem reduces (in
PTime) to the >0-emptiness problem.

Proposition 3.1.5

The quantitative emptiness, universality, equivalence and inclusion decision prob-
lems for monolithic expressions reduce to the >0-emptiness.

⌥

Proof Monolithic expressions contains the constant quantitative languages ci : u ‘æ v
for all v œ Z, it is closed under regular domain restriction, minus and enjoy decidable
domain inclusion, the emptiness, universality, inclusion and equivalence problems. So,
the reduction to the >0-emptiness problem goes as follows:

• to establish f(w) Ø ‹ for all w œ dom(f), it su�ces to check that it is not the case
that ÷w œ dom(f), ≠(f(w) ≠ ‹) > 0

• to establish dom(f2) ™ dom(f1) and f1(w) Ø f2(w) for all w œ dom(f2), when
the first assertion succeeds it su�ces to check that it is not the case that ÷w œ

dom(f2), ≠(f1(w) ≠ f2(w)) > 0
Finally, the strict inequalities variants reduces to Ø0-emptiness which in turns reduces to
>0-emptiness by adding the constant function c1. Note also with similar arguments, we
can show that the >0-emptiness problem can be reduced to the universality and inclusion
problems.

Thus, we only have to provide a decision procedure for >0-emptiness, and to do so,
we first give a normal form on monolithic expressions that allows us to rely on Parikh
automata defined in Section 2.2.
Lemma 3.1.6 ≠ normal form

From any monolithic expression E whose atoms are unambiguous sum-automata
W1, . . . , Wn, one can construct in linear-time an equivalent monolithic expression
Ï(W1, . . . , Wn), for some Presburger combinator Ï.

⌥

Proof We construct EÕ the normal form of E such that [[E]] = [[EÕ]] and |EÕ
| =

O(|E|), by structural induction on E. If E is defined as an unambiguous sum-
automaton W then EÕ = Ïid(W ) where Ïid denote the identity function. If E is
of the form Â(E1, . . . , En) then for each i œ {1, . . . , n} we can construct by induc-
tion hypothesis EÕ

i
= Âi(Wi,1, . . . , Wi,mi) equivalent to Ei. Finally, we define EÕ =

Ï(W1,1, . . . , W1,m1 , . . . , Wn,1, . . . , Wn,mn) where Ï is constructed as follows:

Ï(x1,1, . . . , x1,m1 , . . . , xn,1, . . . , xn,mn , r) = ÷r1, . . . , rn

fi
I

Â(r1, . . . , rn, r)
w

n

i=1 Âi(xi,1, . . . , xi,mi , ri)

Theorem 3.1.7

The emptiness, universality, inclusion and equivalence problems for monolithic
expressions are PSpace-C.

Proof We start by proving the upper bound. By Proposition 3.1.5 and since
PSpace = coPSpace we must only show that the quantitative >0-emptiness prob-
lem is in PSpace. Let E be a monolithic expression, we can assume w.l.o.g. that E is of
the form Ï(W1, . . . , Wn) applying Lemma 3.1.6. Then the proof goes as for Lemma 2.2.3
where Wi are seen as UPA with a trivial acceptance constraint. The formula Õ, in the
proof of Lemma 2.2.3 is now defined as Õ(x1, . . . , xk) = Ï(x1, . . . , xk). Note that, by
taking c = |Ï| as parameter we have that |Õ| Æ ck.
We now show the lower bound, by reduction from the finite automaton intersection
problem. Let A1, . . . , An be n deterministic regular automata with a common alphabet
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�, determining whether {w œ �ú
| w œ

u
n

i=1 L(Ai)} ”= ? is PSpace hard. Moreover,
since PSpace = coPSpace we also have that {w œ �ú

| w œ
u

n

i=1 L(Ai)} = ? is
PSpace hard. So, for each 1 Æ i Æ n, we construct in linear time the deterministic
sum-automaton Wi such that for all w œ �ú if w œ L(Ai) then Wi(w) = 1 otherwise
Wi(w) = 0.
We show that the finite automaton intersection problem can be reduced to the quanti-
tative >0-emptiness problem and its negation can be reduced to the quantitative equiv-
alence problem:

{w œ �ú
| w œ

u
n

i=1 L(Ai)} = ? … ’w œ �ú, ÷1 Æ i Æ n, w /œ L(Ai)
… ’w œ �ú, min(W1(w), . . . , Wn(w)) = 0

{w œ �ú
| w œ

u
n

i=1 L(Ai)} ”= ? … ÷w œ �ú, ’1 Æ i Æ n, w œ L(Ai)
… ÷w œ �ú, min(W1(w), . . . , Wn(w)) > 0

Finally, the PSpace hardness of the quantitative equivalence implies trivially the PSpace
hardness of the quantitative inclusion.

3.2 Weighted expressions with iterated sum

As shown by Proposition 3.1.4 monolithic expressions are strictly more expressive
than finite valued WA

max
sum. However, in this model, combinator cannot be apply at run

time i.e. there is no operation iterable on factors of the input word. For instance, the
following quantitative languages are not definable with monolithic expressions.

Example 3.2.1

Let � = {a, b, c, d} and S = {¶, •} two separator symbols. Let f, g, h be quantita-
tive languages defined, for all n Ø 1 and u1, . . . , un œ �ú, all s1, . . . , sn œ S and all
v1, . . . , vn œ (� fi {•})ú by:

f(u1s1 . . . unsn) =
q

n

i=1 max{#a(ui), #b(ui)}
g(u1s1 . . . unsn) =

q
n

i=1 max{#c(ui), #d(ui)}
h(v1 ¶ · · · ¶ vn¶) =

q
n

i=1 max{f(vi¶), g(vi¶)}

Any atom of a monolithic expression applies on the whole input word, while here
one needs to apply them on factors of the input word. We conjecture that f cannot
be defined with a monolithic expression. Note that h needs two levels of iterations,
as f and g themselves iterate over factors of the sub-words vi.

Let us now formally define what we mean by iterated-sum. It is an unambiguous
quantitative version of the Kleene star, which was already defined in [AFR14].

Iterated sum

We start by defining the language of uniquely decomposable words with respect to a
language L ™ �ú. It is denoted by Lü

™ Lú and define as the set of words w such that
there exists n Ø 1 and at most one tuple (w1, . . . , wn) œ (L \ {Á})n where w = w1 . . . wn.
Conventionally we consider also L~ = Lü

fi {Á}. Given f : �ú
æ Z a quantitative

language, the iterated-sum of f denoted by f~, is defined by f~(Á) = 0, and for all
w œ dom(f)ü, by f~(w) =

q
n

i=1 f(wi), where (w1, . . . , wn) is the unique decomposition
of w. Note that dom(f~) = dom(f)~ for any f .

Proposition 3.2.2

Given a regular language L ™ �ú, its unambiguous iteration L~ is regular.

Proof Let A = (Q, qI , QF , �) be the DFA recognizing L \ {Á}. First one can define
the non-deterministic automaton B (with Á-transitions) from A as B = (Q, {qI , qÕ

I
},

QF fi{qÕ
0}, �fi{(qf , Á, qI) | qf œ QF }) which accepts Á and all words that are decomposable

into non-empty factors of L. Then, by taking the product of B with itself, and by adding a
bit of memory in this product to remember whether some Á-transition was fired in parallel
of a non-Á one (which implies in that case, if the two simulated runs of B terminates,
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that there are two distinct decompositions), one obtains an automaton which accepts
all words which can be non-uniquely decomposed. It su�ces then to complement this
automaton, concluding the proof.

3.2.1 Definition and undecidability of expressions with iterated-

sum

We now define the extension of monolithic expressions with iterated-sum and how it
leads to undecidability.

Definition

A iterated-sum expression E is a term generated by the following grammar, where
W range over unambiguous sum-automata and Ï range over Presburger combina-
tors of some arity n œ N.

E ::= W | Ï(E1, . . . , En) | E~

As for monolithic expressions, the semantics of any iterated-sum expression E is a
quantitative language [[E]] : �ú

æ Z inductively defined on the structure of the expres-
sion, in particular [[E~]] = [[E]]~. The domain dom(E) of an iterated-sum expression is
dom([[E]]). We extend the representation size of a monolithic expression to an iterated-
sum expression by |E~

| = |E| + 1. We also introduce the syntactic sugar +, ≠, max, min
which are Presburger-definable, as well as the regular domain restriction[XII] E|L of a
given expression E for any regular language L.

Example 3.2.3

The quantitative language f of Example 3.2.1 can be defined by the expression
F = max(Wa, Wb)~, where W‡, for ‡ œ {a, b, c, d}, is a deterministic 2-state
sum-automaton counting the number of occurrences of ‡ in words of the form us,
u œ {a, b, c, d}

ú and s œ S (otherwise it is undefined). Similarly, g is defined by
G = max(Wc, Wd)~.
The quantitative language h is defined by H = max(F |L, G|L)~, where L is defined
by the rational expression (�ú

•)ú�ú
¶. Note that in H, iterated-sum operators are

nested, and it is necessary, since the max operator does not distribute over the sum
operator. The example H can be generalized to any nesting level n of iterated-sum
operators, by considering n di�erent separators.

As a positive result, we first show that the domain of any iterated-sum expression E
is e�ectively regular.

Proposition 3.2.4

The domain of any iterated-sum expression is regular.

⌥

Proof The domain of a sum-automaton is regular, and defined by its underlying finite
automaton. For an expression Ï(E1, . . . , En), by induction dom(Ei) is regular for all
i, and by definition, dom(Ï(E1, . . . , En)) =

u
i
dom(Ei) which is regular since regular

languages are closed under intersection. Consider now the case of an expression of the
form E~. By induction hypothesis, dom(E) is regular, and since dom(E~) = dom(E)~,
by Proposition 3.2.2 we get the result.

By reducing the halting problem for 2-counter machines, it turns out that all the
decision problems are undecidable for iterated-sum expressions, even without nesting
iteration operators.

Theorem 3.2.5

Emptiness, universality, inclusion and equivalence for iterated-sum expressions
are undecidable problems, even if only monolithic expressions are iterated.

[XII]
The expression E|L can be e�ectively constructed by E + CL where CL is an unambiguous sum-

automaton such that dom(CL) = L and for all w œ dom(CL) we have that [[CL]](w) = 0.



Section 2 – Weighted expressions with iterated sum 31

Proof The proof of this theorem, inspired by the proof of [DGM17] for the undecidability
of WA

max
sum universality, consists of a reduction from the 2-counter machine halting problem

to the Ø 0-emptiness problem of iterated-sum expressions. In particular, we construct
an expression E such that E(w) Æ 0 for all w œ dom(E), and E(w) = 0 i� w encodes
an halting computation of the counter machine. This establishes undecidability for the
other decision problems by Proposition 3.1.5.
Sketch of proof We first explain the main ideas of the proof. A configuration of a 2-
counter machine is defined as a tuple (q, ‹) where q is a state and ‹ : {x, y} æ Z a
counter valuation. In this reduction, a transition between two successive configurations
...(q1, (x ‘æ c1, y ‘æ d1))”(q2, (x ‘æ c2, y ‘æ d2))..., where ” is a transition of the machine,
is coded by a factor of word of the form: ... „ q1ac1bd1 Ù ” Û q2ac2bd2 ‰„ q2ac2bd2 Ù ....
We show that such a word encodes an halting computation if it respects a list of simple
requirements that are all are regular but two: one that expresses that increments and
decrements of variables are correctly executed, and one that imposes that, from one
transition encoding to the next, the current configuration is copied correctly. In our
example above, under the hypothesis that x is incremented in ”, this amounts to check
that the number of a occurrences before ” is equal to the number of occurrences of a after
” minus one. This property can be verified by simple expression on the factor between
the „ and ‰ that returns 0 if it is the case and a negative value otherwise. The second
property amounts to check that the number of occurrences of a between the first Û and
‰ and the number of a between the second „ and second Ù are equal. Again, it is easy to
see that this can be done with a simple expression that returns 0 if it is the case and a
negative value otherwise. Then, with iterated-sum expressions we decompose the word
into factors that are between the markers „ and ‰, and other factors that are between
the markers Û and Ù, and we iterate the application of the simple expressions mentioned
above. The sum of all the values computed on the factors is equal to 0 if the requirements
are met and negative otherwise.
Formal proof We now formally define the reduction from the halting problem of 2-counter
machines. Let M = (�, {x, y}, Q, qinit , F, �, ·, ⁄) be a deterministic 2-counter machine,
with set of states Q, initial state qinit , accepting states F , transitions � : Q ◊ � æ Q,
guards · : � æ {0, ”=0}

2 (tests to 0 for both counters), and updates ⁄ : � æ {≠1, 0, 1}
2.

Let ‹0 be such that ‹0(x) = 0 and ‹0(y) = 0, and w.l.o.g., let us assume that the
states in F are the halting states of M . We reduce the problem of deciding if the
unique[XIII]computation of M that starts from configuration (qinit , ‹0) reaches or not an
accepting state (from which it halts) to the problem of deciding if for some e�ectively
constructible iterated-sum expression E, there exists a word w œ L(E) such that E(w) Ø

0.
Before defining E, we first explain how we encode computations of M into words over
the alphabet � = Q fi {„, ‰, Û, Ù, a, b} fi �. Let Í =

(q0, v0)”0(q1, v1)”1 . . . (qn≠1, vn≠1)”n(qn, vn)

be a computation of M , we encode it by the following word over �:

„ q0av0(x)bv0(y) Ù ”0 Û q1av1(x)bv1(y)
‰„ q1av1(x)bv1(y) Ù ”1 Û q2av2(x)bv2(y)

‰ . . .

„ qn≠1avn≠1(x)bvn≠1(y) Ù ”n≠1 Û qnavn(x)bvn(y)
‰

So a word w œ �ú encodes of the halting computation of M from ‹0 if the following
conditions holds:

1. the word w must be in the language defined by the following regular expression
(„ Qaúbú Ù � Û Qaúbú

‰)ú

2. the first element of Q in w is equal to qinit , i.e. the computation is starting in the
initial state of M

3. the last element of Q in w belongs to set F , i.e. the computation reaches an ac-
cepting state of M

4. the first element of Q in w is directly followed by an element in �, i.e. the compu-
tation starts from the valuation ‹0

5. for each factor of the form „ q1an1bm1 Ù ” Û q2an2bm2 ‰:
(a) ” is a transition from q1 to q2
(b) (n1, m1) |= ·(”), i.e. the guard of ” is satisfied
(c) ((n1, m1), (n2, m2)) |= ⁄(”), i.e. the updates of ” are correctly realized

6. for each factor of the form Ûq1an1bm1 „‰ q2an2bm2Ù, it is the case that:
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(a) q1 = q2, i.e. the control state is preserved from one configuration encoding to
the next one

(b) n1 = n2 and m1 = m2, i.e. valuations of counters are preserved from one
configuration encoding to the next one

Let us now explain how we can construct an expression E that maps a word w to value
0 if and only if this word is the encoding of a halting computation of M from valuation
‹0, and to a negative value otherwise.
First, we note that this can be done by providing for each of the conditions an expression
which returns 0 when the condition is satisfied and a negative value otherwise. Then we
simply need to combine those expressions with the + operator: the + expression will be
equal to 0 only if all the expressions are equal to 0, and it will be negative otherwise.
Second, we note that all the constraints in the list above are regular constraints with
the exception of 5(c) and 6(b). Being regular, all the other constraints can be directly
encoded as deterministic sum-automaton and so trivially as iterated-sum expressions.
We concentrate here on the constraints that require the use of iteration, and we detail
the construction for constraint 5(c) as the construction for 6(b) is similar and simpler.
For constraints 5(c), we construct an iterated-sum expression E5(c) that decomposes the
word uniquely as factors of the form „ q1an1bm1”q2an2bm2 ‰. On each factor, we evaluate
an simple expression whose value is non-negative if and only if the update defined by
” is correctly realized in the encoding. To show how to achieve this, assume for the
illustration that ” is incrementing the counter x and let us show how this can be checked.
The expression that we construct in this case computes the minimum of 1 + n1 ≠ n2
and ≠1 ≠ n1 + n2. It should be clear that this minimum is equal to 0 if and only if
n2 = n1 +1 (i.e. when the increment is correctly realized). In turn, it is a simple exercise
to construct a deterministic weighted automaton to compute n1 + 1 ≠ n2 and one to
compute n2 ≠ n1 ≠ 1. All the di�erent updates can be treated similarly and thus using
only simple expressions. Now, the iterated-sum expression E5(c) simply take the sum
of all the values obtained locally on all the factors of the decomposition. This sum is
non-negative if and only if all the values computed locally are non-negative.

Remark that, another option would be to define the semantics of E~ as an iteration of
max, i.e. dom(E~) is still the set of words u that are uniquely decomposed into u1 . . . un

with ui œ dom(E), but [[E]](u) = max{[[E]](ui) | i = 1, . . . , n}. This variant is again
undecidable with respect to classical quantitative decision problems. Indeed, a careful
inspection of the proof above show that in constraint E5(c) and E6(b), we can replace
the iteration of sum by iteration of min, or equivalently, if we first reverse the sign of all
expression, by the iteration of max. In that case the max will be non-positive if and only
if the 2-counter machine admits a halting computation.

3.2.2 Synchronized expressions

A close inspection of the proof of Theorem 3.2.5, reveals that the undecidability stems
from the asynchronism between parallel star operators, and in the way they decompose
the input word (decomposition based on „ · · · ‰ or Û · · · Ù). The two overlapping decom-
positions are needed. By disallowing this, decidability is recovered: sub-expressions F~

and G~ at the same star depth must decompose words in exactly the same way.
Let us formalize the notion of star depth. Given an iterated-sum expression E, its

syntax tree T (E) is a tree labeled by Presburger combinators Ï, star operators ~, or
unambiguous sum-automata A. Any node p of T (E) defines a sub-expression E|p of
E. The star depth of node p is the number of star operators occurring above it, i.e.
the number of nodes q on the path from the root of T (E) to p (excluded) labeled by a
star operator. E.g. in the expression Ï(W~

1 , Ï(W~
2 ))~, the sub-expression W~

1 has star
depth 1 while W1 has star depth 2. The star depth of the root of any expression is 0.

Definition ≠ synchronization of iterated-sum expressions

A set of iterated-sum expressions E is synchronized, denoted by the predicate
Sync (E), if for all F, G œ E (not necessarily distinct), all nodes p of T (F ) and
nodes q of T (G) at the same star depth, if F |p = H~ and G|q = I~, then
dom(H) = dom(I). An iterated-sum expression E is synchronized if {E} is syn-
chronized.

[XIII]
The computation is unique as M is deterministic.
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By Proposition 3.2.4, this property is decidable. Asking that H and I have the same
domain enforces that any word u is decomposed in the same way by H~ and I~.

Example

The expressions F, G, H of Example 3.2.3 are synchronized. It is obvious for F and
G since they contain only one star operation. Recall that H = max(F |L, G|L)~
with F |L = max(Wa, Wb)~ + CL and G|L = max(Wc, Wd)~ + CL. Hence H is
synchronized i� dom(max(Wa, Wb)~) = dom(max(Wc, Wd)~), which is the case as
dom(Wa) = dom(Wb) = dom(Wc) = dom(Wd).

Finitely ambiguous WA
max
sum is the largest known class of WA

max
sum for which emptiness,

universality, inclusion and equivalence are decidable [FGR14]. Already for linearly am-
biguous WA

max
sum, universality and equivalence problems are undecidable [DGM17]. Exam-

ple 3.2.1 is realizable by a synchronized expression (Example 3.2.3) or a WA
max
sum which

non-deterministically guesses, for each factor ui, whether it should count the number of
a or b. However, as shown in Section 3.5 of [KLMP04], it is not realizable by any finitely
ambiguous WA

max
sum. As a consequence:

Proposition 3.2.6

There is a quantitative language f such that f is definable by a synchronized
expression or a WA

max
sum, but not by a finitely ambiguous WA

max
sum.

As a direct consequence of the definition of iterated-sum expressions and synchroniza-
tion, synchronized expressions are closed under Presburger combinators and unambiguous
iterated-sum in the following sense:

Proposition 3.2.7

Let E1, . . . , En, E be iterated-sum expressions and Ï a Presburger combinator
of arity n. If Sync (E1, . . . , En) then Ï(E1, . . . , En) is synchronized, and if E is
synchronized, so is E~.

Despite the fact that synchronized expressions can express quantitative languages
that are beyond finitely ambiguous WA

max
sum, decidability holds. It is done by converting

synchronized expressions into a new model of weighted automata, which, with a suitable
notion of synchronization, are decidable with respect to all decision problems considered
in this paper. The next two sections are devoted to the definition of the automata model
and its decidability in its synchronized restriction.

Theorem 3.2.8

The emptiness and universality problems are decidable for synchronized ex-
pressions. The inclusion and equivalence problems for iterated-sum expressions
E1, E2 such that Sync (E1, E2) holds are decidable.

3.3 Weighted Chop Automata

In this section, we introduce a new weighted automata model, called weighted chop
automata (WCA), into which iterated-sum expressions can be compiled. As a conse-
quence, the undecidability of iterated-sum expressions (Theorem 3.2.5) carries over to
WCA. We therefore introduce the class of synchronized WCA, into which synchronized
expressions can be compiled in thus decidability is recovered, proving Theorem 3.2.8.
The intuitive behavior of a WCA is as follows. A hierarchical NFA (whose transitions are
not reading single letters but words in some regular language) “chop” the input word
into factors, on which expressions of the form Ï(C1, . . . , Cn), where Ci are smaller WCA,
are applied to obtain intermediate values, which are then summed to obtain the value of
the whole input word. In the following, we first introduce hierarchical NFA, then WCA

and finally their synchronized restriction.
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Definition ≠ hierarchical regular automata

A hierarchical NFA is a tuple A = (Q, I, F, �) where Q is a set of states, I its
initial states and F its final states, and � maps any pair (p, q) œ Q2 to a regular
language �(p, q) ™ �ú finitely represented by some (classical) NFA.

A run Í of A over a word u œ �ú is a sequence q0u1 . . . qn≠1unqn such that u = u1 . . . un

and ui œ �(qi≠1, qi) for each i. It is accepting if q0 œ I and qn œ F . We say that A is
an unambiguous hierarchical NFA (hierarchical UFA for short) if for all u œ �ú, there is
at most one accepting run of A on u (and hence its decomposition u1 . . . un is unique).
We define the representation size of a hierarchical finite automaton A = (Q, I, F, �) as
|A| =

q
p,qœQ

np,q + card(Q) + card(�) where np,q is the number of states of the NFA

recognizing �(p, q).

Proposition 3.3.1

We can decide whether a hierarchical NFA is unambiguous in PTime.

Proof Let A = (Q, I, F, �) be a hierarchical NFA whose languages �(q, qÕ) are given by
NFA Aq,qÕ = (Qq,qÕ , Iq,qÕ , Fq,qÕ , �q,qÕ). We construct in polynomial time a finite transducer
T = (P, {pI}, {pF }, �Õ) as defined in Section 1.4. Given u œ L(A) as input word, T
outputs any run of A on u. Clearly, T defines a function i� A is unambiguous. In
particular, the transition relation �Õ has type �Õ

™ P ◊ �ú
◊ �ú

◊ P , where � is the
output alphabet. Transitions are denoted by p u | v

≠≠≠≠æ
q where u is the input word and v

the output word. In general, a transducer defines a binary relation from input to output
words, but deciding whether it denotes a function is decidable in PTime [FGR15].[XIV]

To construct T , the idea is as follows. We take � = Q fi � has output alphabet. The set
of states is defined by P = {pI , pF } ‡

v
q,qÕœQ

Qq,qÕ . The transition function is defined
by:

• From its initial state pI , the transducer can only enters into some sub-automaton
AqI ,q and outputs the initial state qI that A should have visit i.e. pI

Á | qI
≠≠≠≠≠æ

sI , for
all qI œ I and sI œ

t
qœQ

IqI ,q.
• To move from a sub-automaton AqÕ,q to a sub-automaton Aq,qÕÕ , the transducer

outputs the state q that A should have visited i.e. sF
Á | q
≠≠≠≠æ

s, for all q œ Q and
sF œ

t
qÕœQ

FqÕ,q and sI œ
t

qÕÕœQ
Iq,qÕÕ .

• To reach its final state pF , the transducer can only exits some sub-automaton
Aq,qF and outputs the final state qF that A should have visited i.e. s Á | qF

≠≠≠≠≠æ
pF , for

all qF œ F and sF œ
t

qœQ
Fq,qF .

• Inside a sub-automaton, only symbols from � are written on the output i.e.
s ‡ | ‡

≠≠≠≠æ
sÕ, for all (s, ‡, sÕ) œ

t
q,qÕœQ

�q,qÕ . ⌥

3.3.1 Definition and closure properties

We formally define weighted chop automata, then investigate their closure properties.

Definition ≠ weighted chop automata

The class of weighted chop automata is inductively defined as follows.
• A 0-weighted chop automaton is an unambiguous sum-automaton.
• For m > 0, an m-weighted chop automaton (m-WCA) is a tuple C = (A, ⁄)

where A is a hierarchical UFA and ⁄ is a function mapping any pair (p, q) œ Q2

to some term Ï(C1, . . . , Cn) where for all i, Ci is an mÕ
-WCA, with mÕ < m

and Ï is a Presburger combinator of arity n. Moreover, it is required that at
least one Ci is an (m ≠ 1)-WCA.

By definition of m-WCA, m is unique and is called the chop level of C. A WCA C
is an m-WCA for some m. This definition is generalized to outputs in Zd for some
d œ N in Section 3.4.

A WCA C defines a quantitative language [[C]] : �ú
æ Z of domain dom(C) in-

ductively defined as follows: If C is a 0-WCA, then its semantics is that of unam-
[XIV]

Corollary 6.3.5 proves that the functionally of a transducer is in NLogSpace.
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biguous sum-automata defined in Section 1.4. Otherwise C = (A, ⁄), and the set
dom(C) is the set of words u = u1 . . . un on which there exists one (and only one)
accepting run Í = q0u1 . . . qn≠1unqn of A such that for all 1 Æ i Æ n, let ⁄(qi≠1, qi)
be of the form Ï(C1, . . . , Ck), then ui œ

u
k

j=1 dom(Cj), and in this case we define
vi = [[Ï]]

!
[[C1]](ui), . . . , [[Ck]](ui)

"
. The value of Í (which also defines the value of u)

is then
q

n

i=1 vi. The range of C is set of values that [[C]] can outputs i.e. R(C) =
{[[C]](u) : u œ dom(u)}.

The unique sequence
!
u1, ⁄(q0, q1)

"
. . .

!
un, ⁄(qn≠1, qn)

"
is denoted in the sequel by

decC (u). We define the representation size of a WCA C = (A, ⁄) with A = (Q, I, F, �)
as |C| =

q
p,qœQ

np,q + card(Q) + µcard(�) where np,q is the number of states of the
NFA recognizing �(p, q) and µ is the maximal size of expressions given by ⁄ formally,
µ = max{|Ï| +

q
k

i=1 |Ci| : p, q œ Q · ⁄(p, q) = Ï(C1, . . . , Ck)}.

Example 3.3.2

Let � = {a, b, c, d} and •, $ /œ �. The 1-WCA C depicted below realizes the
function which maps any word of the form u1$ . . . un$ • v1$ . . . vm$, where ui, vi œ

{a, b, c, d}
ú to

q
n

i=1 max(|ui|a, |ui|b) +
q

m

i=1 max(|vi|c, |vi|d). Note that, here we
write Ci as short-cuts for Ïid(Ci) where Ïid defines the identify function. For all
‡ œ {a, b, c, d}, the automaton A‡ is an unambiguous sum-automaton that counts
the number of occurrences of ‡ in the input word.

(C)

(�ú$)ú
• C1 (�ú$)ú C2

(C1)
�ú$ max{Aa, Ab}

(C2)
�ú$ max{Ac, Ad}

Here, WCA are unambiguous by definition. Note that, a fully non-deterministic ver-
sion of WCA can be defined, by using a max aggregator to combine the values of all
accepting runs. Such definition would generalize WA

max
sum. But as we will see, the > 0-

emptiness problem is already undecidable for (unambiguous) WCA, and further synchro-
nization restriction will be necessary to recover decidability.

Proposition 3.3.3

The domain of any WCA is regular and constructible.

⌥

Proof Let C = (A, ⁄) be an m-WCA where A = (Q, I, F, �). We show by induction
on m that dom(C) is regular. If m = 0 then C is an unambiguous sum-automaton and
its domain is regular (given by its underlying NFA). Otherwise, assume by induction
hypothesis that for all mÕ < m the domain of any mÕ

-WCA is regular. We construct
a hierarchical NFA to recognize dom(C). Let p, q œ Q and ⁄(p, q) = v. We define
dom(v) =

u
k

j=1 dom(Cj) if v = Ï(C1, . . . , Ck). By induction hypothesis each dom(v) is
regular since all Cj is a mÕ

-WCA with mÕ < m. By definition of dom(C), the domain of C
is the language of the hierarchical NFA AÕ = (Q, I, F, �Õ) where for all q, p œ Q we have
�Õ(p, q) = �(p, q) fl dom(v).

Closure properties

We now investigate the closure properties of WCA. Given two quantitative languages
f1, f2, let us define their split sum f1 § f2 as the function mapping any word u which
can be uniquely decomposed into u1, u2 such that ui œ dom(fi) for all i, to f1(u1) +
f2(u2) [AFR14]. We also define the conditional choice f1 Û f2 as the mapping of any
word u œ dom(f1) to f1(u), and of any word u œ dom(f2) \ dom(f1) to f2(u) [AFR14].
These operators may be thought of as (unambiguous) concatenation and disjunction in
rational expressions. WCA are closed under these two operations, as well as Presburger
combinators, (unambiguous) iterated-sum and regular domain restriction, in the sense
given by Proposition 3.3.5.

First, we show a property on the split sum of languages.
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Lemma 3.3.4

Let L1, L2 be two regular languages L1, L2 both realizable by some hierarchical
NFA with at most n states. If L1 § L2 denotes the set of words u which can
be uniquely decomposed into u1u2 with ui œ Li, then there exists 2n regular
languages Ni, Mi such that Ni ™ L1 and Mi ™ L2, and L1 § L2 =

t
n

i=1 NiMi.

⌥

Proof Let A1, A2 be two hierarchical NFA recognizing L1, L2 respectively. We can
suppose w.l.o.g. that A1, A2 are classical NFA by replacing in linear time a call to a sub-
automaton by the automaton itself. We can construct an automaton A that accepts the
words in L1L2 which admits at least two di�erent factorizations with respect to L1, L2.
It su�ces to simulate two runs of A1 in parallel, whenever a copy of A1 goes to an
accepting state, this copy either stays in A1 or, thanks to an added Á-transition, goes to
some initial state of A2. We also add one bit of memory to check that Á-transitions have
been taken at two di�erent moments in the two simulated runs. The accepting states are
states (q2, qÕ

2, 1) where q2, qÕ
2 are accepting states of A2. By complementing A, we obtain

an automaton, say B, recognizing L1 § L2.
Now, we make a product between B and a disjunct union between A1 and A2. If Q
are the states of B, Q1 of A1, Q2 of A2 (with initial states I2), the set of states of this
product is Q ◊ (Q1 ‡ Q2 ‡ I Õ

2) where I Õ
2 is a copy of I2. B initially runs in parallel of A1

and, when A1 enters an accepting state, i.e. the product is in state (q, q1) where q1 œ F1,
then we add some Á-transition to any state (q, qÕ

2) where q2 œ I2. Then, from states
of this form, the product continues its simulation of B and simulates in parallel A2 (in
normal states Q2, so that the copy I Õ

2 is only met once, when the product switches to
A2). Let denote by B ⇥ (A1A2) this product. We set its accepting states to be any pair
(q, q2) or (q, qÕ

2) where q2 and q are accepting. For all states (q, p) of B ⇥ (A1A2), we
denote by Lq,p the set of words that admit a run from some initial state of B ⇥ (A1A2)
to the state (q, p), and dually, we denote Rq,p the set of words that admit a run from the
state (q, p) to some accepting state of B ⇥ (A1A2). We claim that:

L1 § L2 = L(B) =
€

(q,qÕ
2)œQ◊IÕ

2

Lq,q2Rq,q2

Clearly,
t

(q,qÕ
2)œQ◊IÕ

2
Lq,q2Rq,q2 ™ L(B) since the product also checks that the input

words are accepted by B. Conversely, if u œ L(B), then it is uniquely decomposed
into u1u2 where ui œ L(Ai). From Í an accepting run of B that visits the states
q1 . . . qn+1p1 . . . pm+1 while reading u (where n = |u1| and m = |u2|), an accepting
run Í1 that visits the states –1 . . . –n+1 of A1 while reading u1, and a accepting run Í2
that visits the states —1 . . . —m+1 of A2 while reading u2, we can construct the following
accepting run of B ⇥ (A1A2):

(q1, –1) . . . (qn+1, –n+1)(p1, —Õ
1)(p2, —2) . . . (pm+1, —m+1)

We now turn to the closure properties of WCA.

Proposition 3.3.5 ≠ Closure Properties of WCA
The class of quantitative languages defined by WCA is closed under split sum,
conditional choice, Presburger combinators, iterated-sum and regular domain
restriction.
More precisely, let C, C1, . . . , Ck be WCA, Ï be a Presburger combinator of arity
k and L ™ �ú a regular language. One can construct WCA respectively denoted
by Ï(C1, . . . , Ck), C~, C1 § C2, C1 Û C2 and C|L such that

• dom(Ï(C1, . . . , Ck)) =
u

k

i=1 dom(Ci) and for all u œ
u

k

i=1 dom(Ci),

[[Ï(C1, . . . , Cn)]](u) = [[Ï]]
!
[[C1]](u), . . . , [[Cn]](u)

"

• [[C~]] = [[C]]~, [[C§D]] = [[C]]§[[D]] and [[CÛD]] = [[C]]Û[[D]], [[C|L]] = [[C]]|L
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Proof We prove the closure under each operator one by one.
Closure under star. Let C~ = (A, ⁄) defined as follows. The only di�culty is that it

should be unambiguous (because we want decomposition to be unique), hence it is
not correct to add some Á-transition from accepting states of C to its initial states.
However, it is possible to define an unambiguous NFA B = (Q, I, F, �) with a set of
special states S ™ Q such that L(B) = dom(C)~ and such that for all u œ L(B), the
occurrences of special states in the accepting run of B on u decomposes (uniquely)
u into factors that belong to dom(C). Then, the states of C~ are the states S fi I,
the initial states I, final states S fl F , and �(s, sÕ) for all s œ S fi I and sÕ

œ S, is
the set of words on which there is a run of B from s to sÕ that does not pass by
any state of S (except at the end and beginning). This set is easily shown to be
regular. Finally, ⁄(s, sÕ) = Ïid(C) where Ïid defines the identity function.

Closure under regular domain restriction. If C = (A, ⁄), then it su�ces to take the
product of A with any DFA B such that L(B) = L. Since A is a hierarchical
NFA, the product is a bit di�erent than the usual automata product. Assume
A = (Q, I, F, �) and B = (P, p0, F Õ, ”Õ) (a classical DFA). Then A ◊ B = (Q ◊

P, I ◊ {p0}, F ◊ F Õ, � ◊ ”Õ) where for all (q, p), (qÕ, pÕ) œ Q ◊ P we have that
� ◊ ”Õ!(q, p), (qÕ, pÕ)

"
is the set of words in �(q, qÕ) such that there exists a run of

B from state p to state pÕ. This set is e�ectively regular. The resulting hierarchical
NFA is unambiguous since B was taken to be deterministic and A is unambiguous.

Closure under Presburger combinators. The WCA Ï(C1, . . . , Cn) is defined as:

�ú Ï(C1, . . . , Cn)

Closure under conditional choiceThe WCA C1 Û C2 is defined as

dom(C1) Ïid(C1) dom(C2) \ dom(C1) Ïid(C2)

Note that dom(Ci) are regular by Proposition 3.3.3.
Closure under split sum. By Lemma 3.3.4, dom(C1) § dom(C2) =

t
n

i=1 NiMi for some
regular languages Ni ™ dom(C1) and Mi ™ dom(C2). For all i = 1, . . . , n, we define
the WCA (C1 § C2)|NiMi as depicted below:

Ni Ïid(C1) Mi Ïid(C2)

Note that it is unambiguous since NiMi ™ dom(C1) § dom(C2), Ni œ dom(C1)
and Mi œ dom(C2). Furthermore, for all u œ NiMi such that u = u1u2 with
u1 œ dom(C1) and u2 œ dom(C2) we have [[(C1§C2)|NiMi ]](u) = [[C1]](u1)+[[C2]](u2).
Finally, we let C1 § C2 = Ûn

i=1(C1 § C2)|NiMi (the way this expression is paren-
thesized, as well as the order in which the index i are taken, does not change the
semantics). ⌥

A direct consequence of the closure properties of WCA is that any iterated-sum ex-
pression can be encoded into an equivalent WCA.

Corollary 3.3.6

Given an iterated-sum expression E we can construct a WCA C such that [[E]] =
[[C]].

The undecidability of WCA is implied by Theorem 3.2.5 and Corollary 3.3.6. Fur-
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thermore, the iterated-sum expression of Theorem 3.2.5 can be encoded by a 1-WCA.

Corollary 3.3.7

Emptiness, universality, inclusion and equivalence for WCA are undecidable prob-
lems, even for 1-WCA.

3.3.2 Synchronized weighted chop automata

As for iterated-sum expressions, we present a subclass of WCA with a notion of
synchronization into which synchronized expressions can be compiled. Then, in the next
section, we show the decidability of synchronized WCA.

Definition

The notion of synchronization of WCA is inductively defined:
• Two terms Ï1(C1, . . . , Ck) and Ï2(C Õ

1, . . . , C Õ
kÕ) are synchronized if Ci is syn-

chronized with C Õ
j

for all 1 Æ i Æ k and all 1 Æ j Æ kÕ.
• Two WCA C1, C2 are synchronized, denoted by Sync (C1, C2), if they are

either both 0-WCA, or C1 = (A1, ⁄1) and C2 = (A2, ⁄2), and the following
holds: for all u œ L(A1) fl L(A2), if decC1 (u) = (u1, E1), . . . , (un, En) and
decC2 (u) = (v1, F1), . . . , (vm, Fm), then n = m and for all 1 Æ i Æ n, we
have ui = vi and Ei is synchronized with Fi.

We write Sync (C1, . . . , Cn) if Sync (Ci, Cj) for all i, j œ {1, . . . , n}. Now, a WCA C
is synchronized if it is an unambiguous sum-automaton, or it is of the form (A, ⁄),
and any expression Ï(C1, . . . , Ck) in the range of ⁄ satisfies Sync (C1, . . . , Ck).

Note that, the base case synchronizes sum-automaton with sum-automata only. This
induces that the synchronization holds with respects to the chop level. Such property is
formalized by the following statement.

Proposition 3.3.8

Let C1 and C2 be two WCA. As a consequence of the definition of synchronization,
if Sync (C1, C2), then both C1 and C2 are m-WCA for the same m.

In Example 3.3.2 the WCA C have a chop level 1 and cannot be synchronized with C1
or C2 which have a both chop level 0. However, C is synchronized since any Presburger
combinators of C have an arity 1 and C1, C2 are unambiguous sum-automata satisfying
Sync (C1, C2) trivially.

Proposition 3.3.9

Let C1, C2 be two WCA. Deciding whether Sync (C1, C2) holds can be done in
PTime.

Proof We provide a recursive algorithm which takes two chop automata C1, C2 and
checks whether Sync (C1, C2) in PTime. If C1 and C2 are two unambiguous sum-
automaton, then the algorithm returns true. If only one of them is an unambiguous
sum-automaton and the other not, then the algorithm returns false.
Now, consider the case where we have chop automata C1 = (A1, ⁄1) and C2 = (A2, ⁄2).
We first show how to decide the following (weaker) property: for all u œ L(A1) fl L(A2),
if decC1 (u) = (u1, E1), . . . , (un, En) and decC2 (u) = (v1, F1), . . . , (vm, Fm), then n = m
and for all i œ {1, . . . , n}, we have ui = vi.
As in Proposition 3.3.1, the idea is to construct a transducer T , which defines a
function from �ú to 2�ú , whose domain is L(A1) fl L(A2). Given u œ dom(T ), if
decC1 (u) = (u1, E1), . . . , (un, En) and decC2 (u) = (v1, F1), . . . , (vm, Fm), then T returns
the set of words {u1#u2# . . . #un, v1#v2# . . . #vn}. By definition of a WCA decompo-
sition u1 . . . un = v1 . . . vn = u, then the latter set is a singleton i.e. u1#u2# . . . #un =
v1#v2# . . . #vn i� the two decompositions are equal. Hence, it su�ces to decide whether
T defines a function (i.e. is functional), which can be done in PTime in the size of T (see
for instance [BCPS03]).
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⌥

It remains to show how to construct T . T is the disjoint union of two transducers T1 and
T2, which respectively output u1#u2# . . . #un and v1#v2# . . . #vn. Basically Ti can
be seen as a copy of Ai where each transitional NFA are replaced by transducer which
output the input with # as an ending maker. Consider T1. Let A1 = (Q, q0, F, �) and
(Ap,q)p,qœQ be NFA that recognize �(p, q). Whenever a transition (–, ‡, —) of Aq,qÕ is
fired, T1 makes several choices. Either qÕ is not final in Aq,qÕ and T1 moves to state —
and write ‡ on the output. Either qÕ is final, in that case T1 may move to state — while
writing ‡ on the output, or move to the initial state of some automaton AqÕ,qÕÕ for some
non-deterministically chosen state qÕÕ

œ Q, and write ‡# on the output. Clearly, T1 has
a polynomial size in the size of C1.
In order to decide the synchronization between C1 and C2, we also need to check that
Sync (Ei, Fi) for all sub-expressions Ei, Fi that occur at the same position in some
decomposition. Formally, let S be the set of expressions E, F such that there ex-
ists u œ L(A1) fl L(A2), such that decC1 (u) = (u1, E1), . . . , (un, En) and decC2 (u) =
(v1, F1), . . . , (vm, Fm) and there exists i such that Ei = E and Fi = F . We will
show that S can be computed in PTime. Once S has been computed, for every
pair

!
Ï(C1, . . . , Cn), ÏÕ(C Õ

1, . . . , C Õ
m

)
"

œ S, it su�ces to call this algorithm on each pair
(Ci, C Õ

j
) for all i, j.

It remains to show that S can be computed in polynomial time. Again, for all expressions
E, F occurring in the range of ⁄1 and ⁄2 respectively, one could define some automaton
AE,F (of polynomial size) which accepts a word u œ L(A1)flL(A2) i� E, F occurs together
in the respective decomposition of u, i.e. E œ decC1 (u) and F œ decC2 (u). Then, for all
these pairs, if L(AE,F ) ”= ? (which can be checked in PTime), then we add (E, F ) to S.
To construct AE,F , the idea is to simulate, via a product construction, an execution of C1
and an execution of C2 in parallel (by also simulating the smaller automata defining the
regular languages on the transitions of C1 and C2). In this product construction, one bit
of memory is used to remember whether a pair of states (p1, p2) of C1 and C2 respectively,
such that E = ⁄1(p1) and F = ⁄2(p2), was reached. The automaton accepts if such a pair
was found, and the simulation of the two runs accept (meaning that u œ L(A1)flL(A2)).

Since a WCA is synchronized i� any of its Presburger combinators are parameterized
by a synchronized set of WCA, Proposition 3.3.9 implies the following.

Corollary

Deciding whether a WCA is synchronized is in PTime.

3.4 Decidability by synchronization

In this section, we prove that emptiness, universality, inclusion and equivalence prob-
lems are decidable for synchronized WCA. Then, we show that synchronized iterated-sum
expressions can be e�ectively converted into synchronized WCA, thus proving their de-
cidability (Theorem 3.2.8).

Overview of the proof of synchronized WCA decidability

The cornerstone of the proof is proving the semi-linearity of the range of synchronized
WCA. Let us give the intuitive ideas on how this can be shown. Assume for the time
being that we consider a synchronized WCA C = (A, ⁄) with a single state q, and hence a
single transition from q to q on any word of �(q, q). Assume that ⁄(q, q) = Ï(C1, . . . , Cn).
Then, in order to prove that the range R(C) of the function [[C]] is semi-linear, we have
to show that {

!
[[C1]](u), . . . , [[Cn]](u)

"
: u œ �(q, q) fl

u
n

i=1 dom(Ci)} is a semi-linear set.
For a general synchronized WCA, if one wants to prove the result by induction on its
structure, a stronger statement is needed, namely to consider tuples of WCA instead of a
single one. In particular, we show (Lemma 3.4.2) the following result: For all C1, . . . , Cn

WCA such that Sync (C1, . . . , Cn), the following set is semi-linear and constructible:
I

!
[[C1]](u), . . . , [[Cn]](u)

"
: u œ

n‹

i=1
dom(Ci)

J

While product construction naturally extends unambiguous sum-automata to higher
dimension for the outputs, such construction requires synchronization for WCA. So, under
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the condition that any word is decomposed in the same way, we define the product of
n given m-WCA, for some m, as a WCA weighted in Zn. Then, we show semi-linearity
of the range of synchronized WCA, by induction on its chop level (level 0 corresponds
to unambiguous sum-automata with values in Zn). First, we generalize the definition of
WCA.
Definition ≠ generalized weighted chop automata

Let d œ N. The class of generalized WCA of dimension d extends the class of WCA

as follows. A generalized 0-WCA is an unambiguous sum-automaton with values
in Zd. For m > 0, a generalized m-WCA is defined as a WCA (A, ⁄), except that
⁄ returns d-tuples of terms of the form Ï(C1, . . . , Ck), where Ci are generalized
mÕ

-WCA with mÕ < m and Ï is a Presburger combinator of arity d◊k that returns
a d-tuple of values.

Hence, a generalized WCA of dimension d denotes a quantitative language [[C]] : �ú
æ

Zd of domain dom(C). The semantics carry over from (non-generalized) WCA, in partic-
ular, the range of C is the set of values R(C) = {[[C]](u) : u œ dom(C)}. We define the
representation size of a generalized WCA C = (A, ⁄) of dimension d with A = (Q, I, F, �)
as |C| =

q
p,qœQ

np,q + card(Q) + dµcard(�)d where np,q is the number of states of the
NFA recognizing �(p, q) and µ is the maximal size of expressions given by ⁄ formally,
max{|Ï| +

q
k

i=1 |Ci| : p, q œ Q · ⁄(p, q) = Ï(C1, . . . , Ck)}. The notion of synchroniza-
tion is defined the same way as for WCA. Just to make it clear, C1 = (A1, ⁄1) and
C2 = (A2, ⁄2) are synchronized if for all u œ dom(C1) fl dom(C2), we let:

decC1 (u) = (u1, (E1,1, . . . , E1,d)), . . . , (un, (En,1, . . . , En,d))
decC2 (u) = (uÕ

1, (EÕ
1,1, . . . , EÕ

1,dÕ)), . . . , (uÕ
n
, (EÕ

nÕ,1, . . . , EÕ
nÕ,dÕ))

then n = nÕ, for each i œ {1, . . . , n}, j œ {1, . . . , d} and jÕ
œ {1, . . . , dÕ

} we have ui = uÕ
i

and if Ei,j and EÕ
i,jÕ are of the respective form Ï(C1, . . . , Ck) and ÏÕ(C Õ

1, . . . , C Õ
kÕ), then

Sync (C¸, C Õ
¸Õ) for all ¸ œ {1, . . . , k} and ¸Õ

œ {1, . . . , kÕ
}.

Product construction

We now define the product of C1, C2 two generalized m-WCA. If m = 0 then C1, C2
are unambiguous sum-automata with values in Zd1 and Zd2 respectively and the product
construction is a classical state product construction, whose transitions are valued in
Zd1+d2 . Else if m > 0 such that Ci = (Qi, Ii, Fi, �i, ⁄i) for each i, we define C1 ◊ C2 =
(Q1 ◊ Q2, I1 ◊ I2, F1 ◊ F2, �, ⁄) where �

!
(p1, p2), (q1, q2)

"
= �1(p1, q1) fl �2(p2, q2) and

⁄
!
(p1, p2), (q1, q2)

"
=

!
⁄1(p1, q1), ⁄2(p2, q2)

"
for all p1, q1 œ Q1 and p2, q2 œ Q2.

As a direct consequence of the construction and the definition of synchronization, we
have:
Proposition 3.4.1

Let C1, C2 be two generalized WCA. If Sync (C1, C2) holds then dom(C1 ◊ C2) =
dom(C1) fl dom(C2) and [[C1 ◊ C2]](u) =

!
[[C1]](u), [[C2]](u)

"
for all u œ dom(C1) fl

dom(C2).

3.4.1 Decidability of synchronized WCA
We show, by induction on its chop level, that any generalized WCA which is synchro-

nized have a semi-linearity range.

Lemma 3.4.2

Let C1, . . . , Cn be n generalized WCA. If Sync (C1, . . . , Cn) holds then
{
!
[[C1]](u), . . . , [[Cn]](u)

"
: u œ

u
n

i=1 L(Ci)} is semi-linear and constructible.

Proof Let us apply Proposition 3.4.1 to construct the product P = C1 ◊ · · · ◊ Cn

with {t1, . . . , tk} is its set of transitions and ⁄ its weight function. We recall that if
Sync (C1, . . . , Cn) then the Ci are all generalized m-WCA for some m by Proposition 3.3.8.
So, the proof goes by induction on m.
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If m = 0 then the Ci are all unambiguous sum-automata whose transitions are valued by
tuples of integers. We show that R(P ) is semi-linear. As stated by Lemma 2.1.4, there
exists an existential Presburger formula Õ for which (v1, . . . , vk) |= Õ i� there exists
an accepting run in P such that for all i, it triggers the transition ti exactly vi times,
is semi-linear and constructible. The range can be denoted from Õ by the following
existential Presburger formula:

Œ(x) = ÷v1, . . . , vk Õ(v1, . . . , vk) · x =
kÿ

i=1
⁄(ti)vi

Now, suppose that m > 0. By Proposition 3.4.1 we have dom(C) =
u

i
dom(Ci) and for

all u œ dom(C), [[C]](u) =
!
[[C1]](u), . . . , [[Cn]](u)

"
. Therefore, it su�ces to show that

R(C) = {[[C]](u) : u œ dom(C)} is semi-linear to prove the lemma.
Suppose that C = (A, ⁄) where A = (Q, I, F, �) and ⁄ maps any pair p, q œ Q to some
n-ary tuple of expressions

!
Ï1(C1

1 , . . . , C1
k1

), . . . , Ïn(Cn
1 , . . . , Cn

kn
)
"
. We can assume that

�(p, q) = dom(Ci

j
) for all 1 Æ i Æ n and all 1 Æ j Æ ki. This is w.l.o.g. because, if L =u

1ÆiÆn

u
1ÆjÆki

dom(Ci

j
) (which is regular by Proposition 3.3.3), we restrict the domain

of any Ci

j
to L and replace �(p, q) by �(p, q) fl L, this does not change the semantics

of C. Closure under regular domain restriction was shown for (non-generalized) WCA in
Proposition 3.3.5, but the same proof works for generalized WCA that are synchronized.
With this assumption, we get dom(C) = L(A). We also define the range of ⁄(p, q) as
follow:

Sp,q =
Ó1

[[Ï1
!
C1

1 , . . . , C1
k1

"
]](u), . . . , [[Ïn

!
Cn

1 , . . . , Cn

kn

"
]](u)

2
: u œ �(p, q)

Ô

By synchronization of C, all the Cj

i
are all mÕ

-WCA for some mÕ < m and
Sync

!
C1

1 , . . . , C1
k1

, . . . , Cn
1 , . . . , Cn

kn

"
holds. Then the induction hypothesis on the tu-

ple
!
C1

1 , . . . , C1
k1

, . . . , Cn
1 , . . . , Cn

kn

"
gives the semi-linearity of Sp,q since Ï1, . . . , Ïn are

semi-linear maps.
Now, sets of n-tuple of integers have the structure of a monoid (2Zn

, +, 0n) where + is
defined by S + SÕ = {s + sÕ : s œ S, sÕ

œ SÕ
} and 0n = {(0, . . . , 0)} (tuple of arity n).

Consider the free monoid over Q◊Q and the morphism f from this monoid to (2Zn

, +, 0n),
defined by f((p, q)) = Sp,q for all (p, q) œ Q ◊ Q. It is easily shown that for any regular
language N ™ (Q ◊ Q)ú, f(N) is semi-linear. It is because the Sp,q are semi-linear, and
semi-linear sets are (e�ectively) closed under sum, union, and starring [ES69]. Thus, by
taking N ™ (Q ◊ Q)ú as the set of words for the form (p1, p2)(p2, p3) . . . (pk≠1, pk) such
that p1 œ I, pk œ F , and for all i œ {1, . . . , k ≠ 1}, �(pi, pi+1) ”= ? then the semantics of
WCA which sum values along runs gives the desired result.
Details of the regularity of N and the equivalence between R(C), f(N) are given below:

• We prove that N is regular. Let Ap,q be the NFA recognizing �(p, q). It is simple
to combine the automata Ap,q such that �(p, q) ”= ? into a single automaton
recognizing N . For instance, one can take the disjoint union of all Ap,q such that
�(p, q) ”= ?, add the states of A, with I the set of initial states and F the set
of final states, and add the following Á-transitions: from any state p œ Q, add
Á-transitions to the initial states of any NFA Ap,q, and from any final state of any
automaton Ap,q, add some Á-transition to q.

• We prove that R(C) = f(N).
™ Let x œ Range(C). Hence, there exists u œ dom(C) such that [[C]](u) = x.

Let p1 u1
≠≠æ p2 u2

≠≠æ p3 . . . pk
uk
≠≠æ pk+1 be the accepting run of A and u, i.e. ui œ

�(pi, pi+1) for all i = 1, . . . , k. We have — = (p1, p2)(p2, p3) . . . (pk, pk+1) œ N .
By the semantics of WCA, x = x1 + · · · + xk where xi = [[⁄(pi, pi+1)]](ui) for
all i = 1, . . . , k. Hence xi œ Spi,pi+1 and x œ f(—) ™ f(N).

´ Let x œ f(N). There exists (p1, p2) . . . (pk, pk+1) œ N such that x œ Sp1,p2 +
· · · + Spk,pk+1 , by definition of f and N . Hence x =

q
k

i=1 xi for some xi œ

Spi,pi+1 . By definition of the Spi,pi+1 , there exists u1, . . . , uk œ �ú such that
ui œ �(pi, pi+1) and xi = [[⁄(pi, pi+1)]](ui). Moreover, by definition of N , p1
is initial and pk+1 is final, hence u1 . . . uk œ dom(C), and by the semantics of
C, [[C]](u) =

q
i
xi, i.e. x œ R(C). ⌥

A direct consequence of the latter result is the semi-linearity of the range of synchro-
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nized WCA:
Corollary 3.4.3

Given C a synchronized WCA, {[[C]](u) : u œ dom(C)} is semi-linear and con-
structible.

The following theorem is a direct consequence of Corollary 3.4.3, Proposition 3.1.5
and Proposition 3.3.5.

Theorem 3.4.4

The emptiness and universality problems are decidable for synchronized WCA.
The inclusion and equivalence problems for WCA C1, C2 such that Sync (C1, C2)
holds are decidable.

3.4.2 Decidability of synchronized expressions

We conclude this section by showing that any synchronized expression can be con-
verted into a synchronized WCA. This conversion is constructible and thus the decidability
of synchronized expressions (Theorem 3.2.8) becomes a consequence of Theorem 3.4.4.

Main ideas of the proof

Let us illustrate the intuition of this proof on an example. Take some synchronized
expression E = Ï(A, B~) for some unambiguous sum-automata A, B, and some Pres-
burger combinator Ï. The di�culty for converting this kind of expression into WCA,
comes from the fact that A is applied on the whole input word, while B is applied iter-
atively on factors of it. The unambiguous sum-automata A, B are both 0-WCA. Then,
according to the construction of Proposition 3.3.5, the expression B~ can be converted
into a 1-WCA which we also denote by B~. Therefore, A and B~ are not synchronized,
since n-WCA are synchronized with n-WCA only by Proposition 3.3.8[XV]. So, if we
let CÏ(A,B~) be the WCA obtained by applying the Presburger combinator Ï to the 0-

WCA A and the 1-WCA B~ (as defined in Proposition 3.3.5), we have that CÏ(A,B~) is
equivalent to E, but it is not a synchronized WCA in general.

To synchronize A and B~, the idea is to artificially chop runs of A into smaller pieces,
synchronized with B. To do that, we construct a 1-WCA consisting to a hierarchical
NFA which calls A for partial computations from any state p to any state q. Due to
synchronization, these partial computations are required to accept words which are in
dom(B). More precisely, for all states p, q of A we define Ap,q to be the sum-automaton
A with initial state p, final state q, and whose domain is restricted to dom(B). Then, all
the smaller automata Ap,q are combined into a single 1-WCA which simulates successive
applications of the automata Ap,q, by taking care of the fact that the words it accepts
must be uniquely decomposable into factors of dom(B). This resulting 1-WCA, say CA,
is necessarily synchronized with B~, and we can return the single synchronized 2-WCA

CÏ(CA,B~) obtained by applying Ï on CA and B~ (again Proposition 3.3.5), which is
equivalent to expression E. In order to be able to convert any synchronized expression
into a synchronized WCA by structural induction, one needs a stronger statement, namely
on tuples of synchronized expressions:

Theorem 3.4.5

For all tuples of iterated-sum expressions E = (E1, . . . , En) such that Sync (E),
one can construct a tuple of WCA C = (C1, . . . , Cn) such that the following
condition hold:

1. for all i œ {1, . . . , n}, dom(Ci) =
u

n

j=1 dom(Ej)
2. for all i œ {1, . . . , n}, for all u œ

u
n

j=1 dom(Ej), [[Ei]](u) = [[Ci]](u)
3. Sync (C)

[XV]
In this sense, the definition of synchronization may seem a bit strong, unlike that of synchronization

of iterated-sum expressions, but it makes the decidability (and in particular the semi-linearity property

Lemma 3.4.2) way easier to prove, because it allows from a product construction, just as in the non-

iterated case (monolithic expressions)
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Proof The proof goes by induction on |ÈEÍ| =
q

n

i=1 |ÈEiÍ| where for any iterated-sum
expression E, we define |ÈEÍ| œ N inductively by |ÈAÍ| = 0, |ÈE~

Í| = |ÈEÍ| + 1, |ÈÏ(E1, E2)Í| =
1 + |ÈE1Í| + |ÈE2Í|.
So, if |ÈEÍ| = 0, then all expressions in E are unambiguous sum-automata A1, . . . , An, and
hence are 0-WCA. However, the conditions in the lemma requires that the domains of
all WCA are equal to D =

u
n

i=1 dom(Ai). It su�ces to restrict A1, . . . , An to D, which
is always possible since unambiguous sum-automata are closed under regular domain
restriction, and D is regular. One obtains unambiguous sum-automata AÕ

1, . . . , AÕ
n
, i.e.

0-WCA, which satisfy the requirements since unambiguous sum-automata are always
mutually synchronized.
The case |ÈEÍ| > 0 is more involved and is a disjunction of the following cases.
First case. There exists i such that Ei = Ï(F1, F2). Then we define the (n + 1)-

tuple[XVI]EÕ = (E1, . . . , Ei≠1, F1, F2, Ei+1, . . . , En) which satisfies Sync (EÕ) by defi-
nition of synchronization for iterated-sum expressions. We also have |ÈEÕ

Í| < |ÈEÍ|,
hence we can apply the induction hypothesis on EÕ, and obtain a tuple CÕ =
(C1, . . . , Ci≠1, C1

i
, C2

i
, Ci+1, . . . , Cn) of WCA such that:

i for all j ”= i, dom(Cj) = dom(C1
i
) = dom(C2

i
) = DÕ

ii for all j ”= i, [[Ej ]]|DÕ = [[Cj ]], [[F1]]|DÕ = [[C1
i
]], [[F2]]|DÕ = [[C2

i
]]

iii Sync (CÕ) (in particular all WCA in CÕ have the same chop-level m)
where DÕ =

u
–œEÕ dom(–). We return the tuple of WCA

C = (Ïid(C1), . . . , Ïid(Ci≠1), Ï(C1
i
, C2

i
), Ïid(Ci+1), . . . , Ïid(Cn))

where Ïid is a Presburger combinator which realizes the identity function, and the
Presburger operations on WCA have been defined in Proposition 3.3.5. Note that,
we return Ïid(Cj) instead of Cj for all j ”= i, to force each WCA of C to have the
same chop level m + 1 and therefore get synchronization of C.

Second case. There are only stars in the tuple i.e. E is of the form (F~
1 , . . . , F~

n
). In this

case we apply our induction hypothesis on (F1, . . . , Fn), which is synchronized since
(F~

1 , . . . , F~
n

) is synchronized. Then we obtain a tuple of WCA (C1, . . . , Cn), and
return (C~

1 , . . . , C~
n

) where the operation ~ on WCA has been defined in Proposi-
tion 3.3.5.

Third case. Only unambiguous sum-automata and iterated-sum expressions are mixed.
Let us explain the construction with only a single automaton and a single star
expression, i.e. E = (A, F~). The case where there are arbitrarily many automata
and star expressions is more technical but not more di�cult, the main di�culties
being found in this special case. The di�culty comes from the fact that A and F
do not apply at the same level of decomposition, as explained in the overview of
the proof: A runs on the whole input word, while F runs on factors of it.
Hence we artificially chop runs of A into run factors on words of dom(F ). We
assume w.l.o.g. that A is trim[XVII], and for all states p1, p2 of A, define Ap1,p2 to be
A with only initial state p1 and only accepting state p2. Since A is unambiguous
and trim, so are the sum-automaton Ap1,p2 .
Let B be a DFA accepting the set of words u that are uniquely decomposed into
factors in dom(F ) (see the proof of Proposition 3.2.2 for a construction of B). For
all states q1, q2 of B, let Lq1,q2 be the set of words in dom(F ) such that there exists
a run of B from state q1 to state q2. Clearly:

dom(F~) =
€

mœN

I
Lq0,q1Lq1,q2 . . . Lqm≠1,qm

q0, q1, . . . , qm are states of B,
q0 is initial and qm final

J

Now, for all states p1, p2 of A and all states q1, q2 of B, define Ap1,p2,q1,q2 as the
sum-automaton Ap1,p2 restricted to the domain Lq1,q2 . It can be assumed to be
unambiguous as well, since Ap1,p2 is unambiguous and B is deterministic. Then,
apply the induction hypothesis on the pairs (Ap1,p2,q1,q2 , F ) which is synchronized
to get equivalent synchronized WCA (C1

p1,p2,q1,q2 , C2
p1,p2,q1,q2).

We now explain how to combine these WCA into a pair of WCA (C1, C2) equivalent
to (A, F~) on dom(A) fl dom(F~). Let Cp1,p2,q1,q2 be a generalized WCA defined as
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the product C1
p1,p2,q1,q2 ¢ C2

p1,p2,q1,q2 (hence with values in Z2). We now have to
combine all these WCA into a single one C running on the whole input word. We
construct C by taking the union of all WCA Cp,pÕ,q,qÕ , and by “merging”, for all
states p1, p2, p3 of A and all states q1, q2, q3 of B, the accepting states of Cp1,p2,q1,q2

with the initial states of Cp2,p3,q2,q3 . The merging operation is non-deterministic,
because we may need to stay in the automaton Cp1,p2,q1,q2 even if we have already
seen one of its accepting state: when Cp1,p2,q1,q2 triggers a transition to one of
its accepting state, it either go to it, or to some initial state of Cp2,p3,q2,q3 . The
initial states of C are the initial states of any Cp,pÕ,q,qÕ such that p is initial in A, q
is initial in B. The accepting states of C are the accepting states of any Cp,pÕ,q,qÕ

such that pÕ is accepting in A and qÕ is accepting in B. That way, we have dom(C) =
dom(A) fl dom(F~). The WCA C1, C2 are obtained from C by projecting the pairs
of expressions occurring in C to their first and second component respectively.
Finally, let us sketch how to proceed if there are more than one automaton
A1, . . . , An in E and more than one star expression F~

1 , . . . , F~
m

in E. The idea
is very similar, but we consider an automaton B that accepts all words that are
uniquely decomposed according to

u
j

dom(Fj). Since the star expressions are syn-
chronized, they all decompose the input word the same way, making this construc-
tion sound. Then, in the sub-weighted automata Ap,pÕ,q,qÕ , p and pÕ are instead
tuples of states of each automata Aj . ⌥

Finally, the announced direct corollary of the previous lemma is:

Corollary 3.4.6

Any synchronized expression E is equivalent to some synchronized weighted chop
automaton CE , i.e. [[E]] = [[CE ]].

We conjecture that synchronized WCA are strictly more expressive than synchronized
expressions. In particular, we conjecture that synchronized expressions are not closed
under split sum §, unlike synchronized WCA as proved in Proposition 3.3.5. The quan-
titative language of Example 3.3.2 does not seem to be definable by any synchronized
expression.

3.5 Summary and related works

We investigated generalizations of regular automata as a quantitative formalism that
uses the Presburger arithmetic to aggregate values unambiguously summed along runs.

Related works

Chatterjee et al. have introduced a recursive model of WA
max
sum [CHO15] in the context

of infinite words as input, which is called nested weighted automata (NWA) and has
a decidable emptiness and inclusion problems. Using the vocabulary of the authors, a
master WCA decomposes the input word and calls a slave WCA on a fragment while, a
master NWA calls a slave on an infinite remaining su�x of the input word and then the
slave NWA will never halt. So, the two models NWA and WCA bear similarities but we
conjecture that their expressiveness is incomparable. On one hand, the NWA formalism
di�ers from WCA since they can define quantitative languages whose ranges are not
semi-linear. On the other hand, the NWA are not closed under Presburger definable
functions.

Alur et al. have recently introduced a general model of weighted automata for stream
processing, which is hierarchical as chop automata and, is parametrized by a set of
aggregators [AR13]. They goal was to provide e�cient evaluation algorithms for their
model. It could be interesting to see if the notion of synchronization could be defined
on their model to obtain decidability results with respect to quantitative verification
questions, which are left open in [AR13].

In the context of vector addition systems over integers (VASS), Bonnet has shown
[XVI]

Note that this case exhibits already the need to consider tuples of expressions rather a single ex-

pression, to prove Theorem 3.4.5 inductively.
[XVII]

Trim mean that, all its states are accessible from an initial state and co-accessible from a final state.

It is well-known that any automaton can be trimmed in polynomial time.
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decidability of nested zero-test extension [Bon11]. A VASS is a program that manipulates
counters with increments, decrements, and conditional transitions that test the value
of some counters and require them to be zero. Consider a total order on counters of
VASS inducing a priority level between counters. The nested zero-test is a restriction
of zero-test where a counter can be tested for zero on a transition if all the smaller
counters are so. Hence, nested zero-tests are of the form ck = ck≠1 · · · = c2 = c1 = 0
for some k. The main distinction with WCA is that VASS does not read input words.
However, the nesting of zero-tests share similarities with the chop level, and it is well
known that Presburger relations are exactly the class of relations expressible by flat[XVIII]

counter automata with increments, resets, positive decrements, and zero-tests [Gur85].
In [HZ19], authors considered a generalization of Presburger formula by introducing the
iterated sum operator and thus, provide tight complexity results for VASS with nested
zero-tests. This approach seems to be compatible with the WCA formalism and then is
a promising starting point to obtain tight complexity results for the emptiness of WCA.

Future works

An expression formalism with the unambiguous iterated sum, conditional choice and
split sum, whose atoms are constant quantitative languages[XIX], was already introduced
in [AFR14] which shown that this expression formalism is equivalent to unambiguous
WA

max
sum. Our goal was then to go beyond this expressibility, by having a formalism closed

under Presburger combinators. Adding such combinators to the expressions of [AFR14]
would immediately yield an undecidable formalism, as a consequence of Theorem 3.2.5.
It turns out that extending iterated-sum expressions with split sum § and conditional
choice Û, with a suitable notion of synchronization, gives a formalism equivalent to syn-
chronized WCA. An interesting further direction would be to define a simple notion of
synchronization for the extension of [AFR14] with Presburger combinators. More gener-
ally, our notion of synchronization is semantical (but decidable). This raises the question
of whether another weighted expression formalism with a purely syntactic notion of syn-
chronization could be defined.

Also, Proposition 3.2.6 highlights the fact that WCA, which are unambiguous by
definition, are strictly more expressive than finitely ambiguous WA

max
sum. It turns out that

WCA can also define quantitative languages which seem to require exponential ambiguity
of WA

max
sum, for instance the function f of Example 3.2.1, given by:

f(u1s1 . . . unsn) =
nÿ

i=1
max{|ui|a, |ui|b}

As a matter of fact, we conjecture that WA
max
sum and WCA have incomparable expressive

power. We have shown in Proposition 3.1.4 that simple expressions (which are strictly
less expressive than WCA) can express quantitative languages which are not definable
by WA

max
sum, for instance the function u ‘æ min{|u|a, |u|b}. We conjecture that the fol-

lowing quantitative language “max prefix”, which is trivially definable by some linearly
ambiguous WA

max
sum, is not definable by any WCA.

u œ {a, b}
ú

‘æ max{|uÕ
|a ≠ |uÕ

|b : uÕ
ı u}

Indeed, and intuitively, chop automata decompose the input word unambiguously into
independent, non-overlapping factors, which are themselves decomposed recursively. Im-
plementing the function “max prefix” requires to consider linearly many overlapping
factors (the prefixes). Of course, this function would be definable by an extension of
WCA where the unambiguity condition is dropped, however, this would yield a model
strictly more expressive than WA

max
sum and as a consequence, undecidable for the inclusion

problem for instance.

[XVIII]
Flat automata cannot have cycles that contain a cycle, i.e. they can have simple cycles only.

[XIX]
Any word from a regular language is mapped to a same constant value.
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Chapter 4

Error models

The model-checking has proved to be successful applications for program verification
with respect to a given specification. However, this approach does not provide a mea-
sure of confidence about the answer and thus, raises an idealistic technique that is too
rigid when the system parameters are prone to errors. For instance, when the specifica-
tion comes from machine-learning as medical observations or when the input has been
performed by a noisy cyber-physical system as signal sensors.

In this chapter, we present a quantitative approach that places a metric on words to
provide a natural notion of distance between words. Such a metric leads to a topological
neighborhood of words and languages that we use to model the cost of errors and which
allows us to challenge the systems on its robustness. In particular, we assume that the
cost of rewriting a word back to itself is 0. Hence, a language is said to be robust if
the language membership cannot di�er for two “close” words, and that leads to robust
versions of all the classical decision problems as language inclusion for instance.

Transducers is a well know formalism that generalizes regular automata to define
word-to-word relations [Ber79]. In the transducer formalism, we are able to model various
error situations depending on the (input, output) label of a transition, a letter insertion
(Á, a), a deletion (a, Á) and a mutation (a, b). Our contribution is to study robustness
verification problems in the context of weighted transducers which assign a non-negative
rational cost to each pair of words (u1, u2) to model the cost of rewriting u1 into u2.
More precisely, given a distance d : �ú

◊ �ú
æ Q defined by a weighted-transducer

and a threshold ‹ œ QØ0, the ‹-neighborhood of a regular language N is defined as
N‹ = {uÕ : ÷u œ N C(u, uÕ) Æ ‹}. Hence, the robust inclusion problem N‹ ™ L relax the
classical inclusion N ™ L up to an error ‹. We also investigate the threshold synthesis
that consists of computing the largest ‹ œ QØ0 for which the robust inclusion holds.

To denote such distance functions, we define the weighted transducers together with
an aggregator that combines the cost of each individual rewriting of the transducer into
an overall cost between the input and output words. Taking the minimal number of
letter transformations insertion, deletion and mutation, (i.e. the minimal sum with cost
1 for all of these transformations, defines the Levenshtein (a.k.a. edit) distance [Moh02].
Aggregating the costs with a discounted sum allows us to make the costs of rewrites
dependent on the positions where the rewrites take place. And finally, the average is
often used when the length of rewrites does not matter. We provide algorithms to decide
the robust inclusion problem for these three measures (sum, mean, and discounted sum).
Furthermore, we provide case studies including modeling human control failures and
approximate recognition of type-1 diabetes using robust detection of blood sugar level
swings.

4.1 Robust verification framework

Weighted transducers extend regular automata with both string outputs and weights
on transitions [DKV09]. Automata with string outputs and automata with integer out-
puts have been defined in Section 1.4. For weighted transducers, any accepting run over
some input word rewrites each input symbol into a (possibly empty) word, with some
cost in N. Transducers can also have Á-input transitions with non-empty outputs, such
that output symbols can be produced even though nothing is read on the input, e.g.
allowing for symbol insertions. The output of a run is the concatenation of all output
words occurring on its transitions. Its cost is obtained by applying an aggregator function
C : Nú

æ QØ0, which maps a sequence of naturals[I] to a rational number. We consider
three di�erent aggregator functions, given later. Since there are possibly several accept-

[I]
Note carefully that Nú

refer to the set of words from the infinite alphabet N.
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ing runs over the same input, and generating the same output, we take the minimal cost
of them to compute the value of a pair of input and output words.

Definition ≠ C-transducers

Let C : Nú
æ QØ0 be an aggregator. A C-transducer T is a tuple (A, W) where

A = (Q, QI , QF , �, “) is a transducer for which Á-transition cannot output Á and
W : � æ N associates weights to each transition.

Consider a C-transducer T = (A, W). As defined in Section 1.4, AccRunA(u1, u2)
denotes the set of accepting runs of A on the input u1 and the output u2. The transducer
T has the same set of accenting runs that we refer as AccRunT (u1, u2). Given Í œ

AccRunT (u1, u2) such that Í = t1 . . . tn œ �ú of A is associated to the aggregated cost C(Í)
defined by C(W(Í)) with the weighted sequence W(Í) = W(t1) . . . W(tn). The input/output
relation [[T ]] is defined as {(u1, u2) : AccRunT (u1, u2) ”= ?}. The domain and the range
of T are respectively dom(T ) = {u1 : (u1, u2) œ [[T ]]} and R(T ) = {u2 : (u1, u2) œ [[T ]]}.
The cost associated by T from a pair of words (u1, u2) is given by:

CT (u1, u2) =
I

+Œ if AccRunT (u1, u2) = ?
min{C(Í) : Í œ AccRunT (u1, u2)} otherwise

Since runs of T consume at least one symbol of the input or one of the output on
every transition, there are finitely many runs on a pair (u1, u2), hence the min is
well-defined. We assume that our C-transducers T satisfy the condition that for all
u œ dom(T ), CT (u, u) = 0 and so, in particular (u, u) œ [[T ]]. In other words, it is al-
ways possible to rewrite u into itself at zero cost. Finally, given ‹ œ Q and an input
word u1 œ dom(T ), we define the threshold output language of u1 as TÆ‹(u1) = {u2 :
CT (u1, u2) Æ ‹}. This notation extends naturally to languages N ™ �ú by setting
TÆ‹(N) =

t
u1œNfldom(T ) TÆ‹(u1).

We consider three aggregator functions, namely the sum, the mean and the discounted-
sum. Let ⁄ œ Q fl (0, 1) be a discount factor. Given a sequence of weights w = w1 . . . wn,
those three functions are defined by:

Sum(w) =
nÿ

i=1
wi Mean(w) =

I
0 if w = Á
Sum(w)

n
otherwise

DSum(w) =
nÿ

i=1
⁄(i≠1)wi

Note that, by ignoring the word outputs of a Sum-transducer and keeping only the
weight outputs raise a definition that coincide with WA

min
sum of Section 1.4, i.e. weighted

automata over the semi-ring (N fi {+Œ}, min, +).

(T1)

a | a, 0

a | b, 1 (T2)

a | a, 0

a | b, 2

a | b, 1 a | a, 1

a | b, 1

Figure 4.1: Examples of weighted transducers of domain {a}
ú over the alphabet {a, b}.

The weighted transducer T1 on Figure 4.1 has exactly one accepting run on any
input/output pair of words. As a straightforward application of the definitions, we have
that SumT (aaaa, baab) = 2, MeanT (aaaa, baab) = 1

2 and DSumT (aaaa, baab) = ⁄0 + ⁄3 for
any discount factor ⁄ œ Q fl (0, 1). In contrast, the weighted transducer T2 on Figure 4.1
admits a polynomial number of accepting runs on the length of the input/output pair of
words. Basically, achieving the minimal cost consists of determining the position in the
input word when it becomes beneficial to always aggregate 1 instead of a non-equitable
share depending on the output letter. For all u œ {a, b}

ú, we have that SumT (a|u| , u) =
min{2|v1|b + |v2| : u = v1v2} where |v1|b denotes the number of occurrences of b in v1 and
MeanT (a|u| , u) = SumT (a

|u|
,u)

|u| . Hence, SumT (aaaa, baab) = 3 and MeanT (aaaa, baab) = 3
4 .

For the discounted sum aggregator, the minimal cost run also depends on the discount
factor ⁄ œ Q fl (0, 1), we have that DSumT (a|u| , u) = min{

q|v1|
i=1 xi⁄i≠1 + ⁄

|v1| ≠⁄
|u|+1

1≠⁄
:

u = v1v2 · u[i] = b ∆ xi = 1 · u[i] = a ∆ xi = 0}. In particular, DSumT (aaaa, baab) =
min{2 + ⁄3, 1≠⁄

4

1≠⁄
}.
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Robustness problems

We study the following three fundamental problems related to robustness for three
di�erent aggregator functions C œ {Sum, Mean, DSum}. Given a threshold ‹ œ Q, a C-
transducer T and a regular language L, a word u œ dom(T ) is said to be ‹-robust, or just
robust if ‹ is clear from the context, if TÆ‹(u) ™ L. In other words, all its rewritings of
cost ‹ at most are in L. A language N ™ �ú is said to be ‹-robust if N fldom(T ) contains
only ‹-robust words. Finally, the ‹-robust kernel of T is the set RobT (‹, L) of ‹-robust
words: RobT (‹, L) = {u œ dom(T ) : TÆ‹(u) ™ L}

The following Proposition states that bigger is the error threshold, coarser is the
robust kernel.
Proposition 4.1.1

Given ‹, ‹Õ
œ QØ0 and a C-transducer T and a regular language L, we have that

‹Õ
Æ ‹ =∆ RobT (‹Õ, L) ™ RobT (‹, L).

⌥

Proof By definition TÆ‹(u1) = {u2 : CT (u1, u2) Æ ‹}. For all u1 œ dom(T ) we have
that u1 œ RobT (‹, L) i� for all u2 both u2 œ L and CT (u1, u2) Æ ‹ hold. Clearly
u1 œ RobT (‹, L) implies u1 œ RobT (‹Õ, L) for any ‹Õ

Æ ‹.
We are in a position to formally define the three key problems studied in this chapter.

For these definitions, we let C œ {Sum, Mean, DSum}.

Problem 4.1.2 ≠ Robust Inclusion

Given a C-transducer T , a regular language N ™ �ú as an NFA, a threshold ‹ œ QØ0
and a language L ™ �ú as a DFA, the robust inclusion problem is to decide whether
N ™ RobT (‹, L), i.e. whether TÆ‹(N) ™ L.

Problem 4.1.3 ≠ Threshold synthesis

Given a C-transducer T , a regular language N ™ �ú as an NFA, and a regular
language L ™ �ú as a DFA, the threshold synthesis problem is to output a partition
of the set of thresholds QØ0 = G‡B into sets G and B of good and bad thresholds,
i.e. G = {‹ œ QØ0 : N ™ RobT (‹, L)} and B = {‹ œ QØ0 : N ”™ RobT (‹, L)}.

As direct consequence of Proposition 4.1.1, the sets G and B are intervals of values,
that is for all ‹1, ‹2 œ QØ0, if ‹1 < ‹2 and ‹2 œ G, then ‹1 œ G, and if ‹1 œ B then
‹2 œ B. Also note that one of the two sets may be empty, in which case the other is the
entire set QØ0.

4.2 Robustness toward shortest path problem

In this section, given an instance of the threshold synthesis problem, we show how
to compute the interval of good thresholds G and the interval of bad thresholds B in
PTime for Sum, Mean, DSum measures. As a corollary, we show that the robust inclusion
problem is in PTime for all the three measures we consider.

In the following, we assume that N = dom(T ). This is w.l.o.g. as transducers are
closed under regular domain restriction thanks to a product construction of T with the
automaton for N constructible in polynomial time. With this assumption, the set of
good threshold G becomes G = {‹ œ QØ0 : dom(T ) ™ RobT (‹, L)} and dually for the
set of bad thresholds B. We let ‹T,L be the infimum of the set of bad thresholds, i.e.
‹T,L = inf B = inf{‹ œ QØ0 : dom(T ) ”™ RobT (‹, L)}. As illustrated by the following
example, computing ‹T,L allows us to compute B and G.

Example

Let � = {a, b, c} and C œ {Mean, DSum}. Consider the best threshold problem
for T the C-transducer of Figure 4.2, N = dom(T ) = {a}

ú and L = {a}
ú

fi {b}
ú.

Note that the translations accepted by ok and id belong to L. On the contrary,
translations accepted by ko do not belong to L and so they are not robust with
respect to L for any threshold. For Mean measure, the cost of a translation into
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{c}
ú is exactly 1 while the one into {b}

ú range over [0, 1). Hence ‹Mean

T,L
= 1 and

the set partition of good and bad thresholds is GMean = [0, 1) and BMean = [1, +Œ).
In the case of DSum with discount factor 0.5, the cost of a translation into {c}

ú

range over [2, 2.5) while the one into {b}
ú range over [0, 2). So ‹DSum

T,L
= 2 and the

thresholds are partitioned by GDSum = [0, 2) and BDSum = [2, +Œ).

(T )
id ok ko

a | a, 0 a | b, 1

a | b, 0 a | c, 2 a | c, 0

a | c, 1

Figure 4.2: Transducer T for which the infimums ‹Mean

T,L
= 1 and ‹DSum

T,L
= 2 are bad thresh-

olds for T interpreted as Mean- and DSum-transducer with discount factor 1
2 respectively,

and for L = {a}
ú

fi {b}
ú.

Then, we associate with every transducer T and property L given by some DFA A,
a transition system with natural weights as defined in Section 1.4 and we denote it by
GT,A. Intuitively, GT,A is obtained by first taking the synchronized product of T and A
(where A is simulated on the outputs of T ) and then by projecting this product on the
inputs.

Formally, given T = (Q, QI , QF , �, W) and A = (P, pI , PF , Ò), the associated transi-
tion system is the synchronized product GT,A = (V, E, VI , VF ) weighted by WÕ : E æ N
defined such that:

• V = Q ◊ P
• E is the set of transitions e = (q, p) ≠æ (qÕ, pÕ) such that there exists a œ �fi{Á} and

a transition t = (q, a, u, qÕ) œ � such that pÕ = Ò(p, u) where Ò has been extended
to words in the expected way. We say that e is compatible with t.

• For all e œ E, WÕ(e) = min{W(t) : e is compatible with t}.
• VI = QI ◊ {pI} is the set of initial states.
• VF = QF ◊ (P \ PF ) is the set of final states.

Additionally, given a run Í in this transition system as a sequence of transitions e1 . . . en,
we let C(Í) = C(WÕ(e1) . . . WÕ(en)) be its weight.

The following lemma establishes some connection between ‹T,L and the runs of GT,A.

Lemma 4.2.1

Let GT,A be the weighted transition system associated to the given C-transducer
T and the given regular automaton A. The infimum cost of accepting runs is
equal to ‹T,L, i.e. ‹T,L = inf{C(Í) : Í œ AccRunGT,A}.

⌥

Proof We first show that any accepting run Í satisfies C(Í) Ø ‹T,L. By construction
of GT,A, there exists an input word u1 œ dom(T ), some output word u2 /œ L and an
accepting run r of T on (u1, u2) of value C(r) = C(Í). Since the value CT (u1, u2) is the
minimal value of all accepting runs of T overs (u1, u2), we have C(r) Ø CT (u1, u2) and
u1 is not robust for threshold CT (u1, u2), a fortiori for threshold C(r), from which we
get C(r) = C(Í) Ø ‹T,L. This shows that ‹T,L Æ inf{C(Í) : Í œ AccRunGT,A}.
Suppose that ‹T,L is strictly smaller than this infinimum (that we denote m) and take
some rational number ‹ such that ‹T,L < ‹ < m. Since ‹T,L < ‹, it is a bad threshold
which means that there exists u1 œ dom(T ) such that u1 ”œ RobT (‹, L). Hence there exists
u2 ”œ L such that CT (u1, u2) Æ ‹, and by definition of GT,A, there exists an accepting
run Í of value C(Í) Æ ‹. This contradicts the fact that ‹ < m by definition of m. Hence,
‹T,L = m, concluding the proof.

The next lemma establishes that the infimum of values of accepting runs in a weighted
transition system can be computed in PTime and it is also decidable in PTime if the
infimum is realized, for all the three measures considered in this chapter. As a direct
corollary of this lemma we obtain the main theorem of the section.
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Lemma 4.2.2

For a transition system G = (V, E, VI , VF ) weighted by W : E æ QØ0, the infi-
mum amongst the value of accepting runs can be computed in PTime for all
C œ {Sum, DSum, Mean}. Moreover, we can decide in PTime if this infimum is
realizable.

⌥

Proof We first trim the transition system G by removing all the states that cannot be
reached from an initial state or that cannot reach a final state as those states cannot par-
ticipate to run acceptance. The set of accepting runs is empty i� the trimmed transition
system is empty and then the infimum is equal to +Œ. Now, we assume the trimmed
transition system to be non-empty, i.e. there is at least one accepting run.
We now consider the three measures in turn. For Sum, the infimum amongst the value of
accepting runs in the transition system G with non-negative weights can be computed in
PTime using Dijkstra shortest-path algorithm and it is always realizable by a cycle-free
accepting run.
For Mean, we first note that the infimum is either realized by a cycle-free accepting run
or comes from the value of a reachable cycle from an initial state that can be iterated
arbitrarily many times before moving to some accepting state. In the latter case, if c is
a cycle of Mean m which is smaller than the Mean value of any accepting run then the
family of runs Ík = Í · ck

· ÍÕ, where Í is a cycle-free run from some initial state to c and
ÍÕ is a cycle-free run from c to some final state[II]and such that lim

k ‘æ+Œ Mean(Ík) = Mean(c)
and Mean(c) is the infimum. Now if all the cycles have a value larger than the infimum,
they are not beneficial as those cycles can be systematically removed and give runs with
smaller values. Note that the minimum Mean values amongst cycle-free accepting runs
can be computed in PTime by a simple dynamic program that considers the minimal
values of runs of lengths at most equal to the number of states. Moreover, the minimum
mean value of cycles in the trimmed transition system can be computed in PTime using
the algorithm of [Kar78]. It is easy to see that if the infimum is realizable i� it equals
the minimum Mean value of cycle-free runs.
For DSum, Theorem 1 of [AKTY13] tells us that for all v œ V we can compute the
infimum value xv of runs from v to some final state in PTime. According to Lemma 1
of [AKTY13], and similarly to the case of Mean, the infimum DSum value xv is either
realized by a cycle-free run or by a family of runs of the form Í · ck

· ÍÕ. This is because
if it is beneficial to include a cycle c to reduce the cost of a run from v to some final
state then it is beneficial to iterate this cycle arbitrarily many times. In particular, the
infimum is realizable only when there exists not such beneficial cycle. In order to decide
the realizability of the values xv for all v œ V , we consider GÕ as the transition system
G where we keep only those transitions e = (v, vÕ) such that the optimal value xv to
reach some final state from v can be realized through the state vÕ. Let ⁄ be the discount
factor. Formally, we construct the transition system GÕ = (V, EÕ, VI , VF ) with EÕ

™ E
and such that (v, vÕ) œ EÕ if xv = ⁄xvÕ + W(v, vÕ). We claim that, VF is reachable from v
in GÕ i� xv is realizable in G from v, hence testing realizability boils down to checking
the existence of a run in GÕ.
The left-to-right implication comes by induction on the length of the run Í from v to
some final state. If vI œ VF then |Í| = 0 and xvI ,vF = 0 which is realizable. Assume
vI /œ VF and Í = (v, vÕ)ÍÕ. By induction hypothesis, xvÕ is realizable by some run ÍÕÕ from
vÕ to VF . By construction of GÕ we have xv = ⁄xvÕ + W(v, vÕ). Hence xv is realizable by
(v, vÕ)ÍÕÕ.
For the right-to-left implication, if v œ VF it is trivial, so assume that v ”œ VF and let
Í = (v, vÕ)ÍÕ a run that realizes xv. Assume xv > ⁄xvÕ + W(v, vÕ). This contradicts
the optimality of xv, as Í witnesses a better discounted value from v to VF . Assume
xv < ⁄xvÕ + W(v, vÕ), then since Í realizes xv, we have xv = W(v, vÕ) + ⁄DSum(ÍÕ). It
implies DSum(ÍÕ) < xvÕ . This contradicts the minimality of xvÕ , as then ÍÕ witnesses a
better value for runs from vÕ to VF . Hence xv = ⁄xvÕ +W(v, vÕ) and (v, vÕ) is an transition
of GÕ. By induction on the length of Í, we can also conclude that ÍÕ is a run of GÕ and
then Í is a run of GÕ from v to VF .

[II]
Such cycle-free run exist as the transition system is trimmed.
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Theorem 4.2.3

For a given C-transducer T , a language N ™ �ú given as an NFA and L ™ �ú

given as a DFA, the set partition of good and bad thresholds (G, B) for C œ

{Sum, DSum, Mean} can be computed in PTime.

⌥

Proof First, we restrict the domain of T to N by taking the product of T and the
automaton for N (simulated over the input of T ). Then we can compute in PTime
the value ‹T,L thanks to Lemma 4.2.2. This value is the infimum of B according to
Lemma 4.2.1. If this infimum is realizable then the interval B is left closed and equal to
[‹T,L, +Œ) while G = [0, ‹T,L), and on the contrary, if this infimum is not realizable, then
B is left open and equal to (‹T,L, +Œ), while G = [0, ‹T,L]. Note that when ‹T,L = 0
and is realizable, then G = [0, 0) = ?.

As a direct consequence, the robust inclusion problem for a threshold ‹ can be solved
by checking if ‹ œ G, and so we have the following corollary.

Corollary 4.2.4

Let C œ {Sum, DSum, Mean}. Given T a C-transducer, N ™ �ú given as an NFA,
L ™ �ú given as a DFA and ‹ œ Q. The language inclusion N ™ RobT (‹, L) can
be decided in PTime.

4.3 Case Studies

Some experiment part on robustness have been investigate by peoples from University
of Colorado Boulder, thanks to a collaboration. This section describes the implementa-
tion of the ideas shown thus far and their application to a detailed case studies. Sankara-
narayanan and Trivedi have implemented in Python the threshold synthesis problem 4.1.3
for the discounted and average costs. This implementation supports the specification of
a language L specified as a NFA, a weighted transducer T and a property P specified as
some DFA.

4.3.1 Robustness of Human Control Strategies

An industrial motor operates under many gears g1, . . . , g5. Under fault, the human
operator must take control of the machine and achieve the following: If the system goes
into a fault the operator must ensure that (i) the system is immediately set in gears 3≠5.
Subsequently, for the next 5 cycles (ii) it must never go to gear g1 or g2. And (iii) must
shift and stay at a higher gear g4 or g5 after the 5th cycle until the fault is resolved.

(P)

s s0 t1 t2 t3 t4 t5

r1 r2 r3 r4 r5

s1 s2 s3 s4 s5

fault

g3

g3 g3 g3

g4

g3

g5� \ fault

Figure 4.3: Finite state automaton P showing a desired property for the automatic
transmission system. All incoming edges to s1, . . . , s5 have label g3, incoming edges to
t1, . . . , t5 have label g4 and r1, . . . , r5 have incoming edges labeled g5. All edges not
shown lead to a rejecting sink state.

Figure 4.3 shows a finite state machine P that accepts all words satisfying this prop-
erty: fault is not in the operator’s control but g1, . . . , g5 are operator actions. Consider
that the operator can perform this task in two di�erent ways: ‡1 : fault g4 g4 g4 g4 g5 g5
versus ‡2 : fault g3 g3 g3 g3 g3 g4. The input ‡1 induces the run s, s0, t1, t2, t3, r4, r5
whereas the input ‡2 induces the run s, s0, s1, s2, s3, s4, t5. Both ‡1, ‡2 satisfy the prop-
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erty of interest and as such there is nothing to choose one over the other. Suppose the
human operator can make mistakes, especially since they are under stress. We will con-
sider that the operator can substitute a command for gear gi with gi≠1 (for i > 1) or
gi+1 (for i < 5). We use a weighted transducer T0 shown in Figure 4.4 to model these
substitutions. The transducer defines possible ways in which a string ‡ can be converted
to ‡Õ with a notion of cost for the conversion. This example consider two notions of
cost, the DSum-cost and the Mean-cost. These costs now allow us to compare ‡1 versus
‡2. For instance, under both notions, it turn out that ‡1 is much more robust than ‡2.
The robustness of ‡1 under both cost models is Œ since any change to ‡1 under the
transducer continues to satisfy the desired property. On the other hand ‡2 has a finite
robustness, since operator mistakes can cause violations.

(T0)
s0

id, 0

gi | gi+1, 1
’i œ {1, . . . , 4}

gi | gi≠1, 1
’i œ {2, . . . , 5}

(T1)
t0 t1 t2

id, 0

gj | gj≠1, 1

gk | gk+1, 1

id, 0

gj | gj≠1, 1

gk | gk+1, 1

id, 0

(T2)
t0 t1 t2 t3

id, 0

gj | gj≠1, 1

gk | gk+1, 1

gj | gj≠1, 1

gk | gk+1, 1

gj | gj≠1, 1

gk | gk+1, 1

Á
id, 0

Figure 4.4: Transducers modeling potential human operator mistakes along with their
costs: T0 allows arbitrarily many mistakes whereas T1 restricts the number of mistakes
to at most 2, whereas T2 models a “bursty” set of mistakes. The edge a | b, w denotes a
replacement of the letter a by b with a cost w. For convenience T2 uses an Á transition
that can be removed.

String T0 T1 T2
Disc. Avg. Time Disc. Avg. Time Disc. Avg. Time

g4
4g2

5 Œ Œ Á Œ Œ Á Œ Œ Á

g3
3g3

4 2≠5 1
6 0.03 2≠5 1

6 0.03 7
32

1
2 0.03

g3g3
4g5g3

4g3g4 0 0 0.04 0 0 0.06 0 0 0.06
g10

3 g10
4 0 0 0.07 0 0 0.09 0 0 0.1

g5
3g15

4 g5
5g3

4g5 7.45e-9 0.035 0.12 7.45e-9 0.035 0.2 2.6e-8 0.103 0.2
g4

3g25
4 g25

5 3.7e-9 0.019 0.15 3.73e-9 0.019 0.4 6.52e-9 0.056 0.3

Table 4.1: Running times and robustness values computed by Sankaranarayanan and
Trivedi for various input strings (the first letter fault is common to all the strings and is
omitted). All timings are measured in seconds, Á denotes time < 0.01 seconds.

The use of a transducer allows for a richer specification of errors. For instance,
transducer T2 in Figure 4.4 shows a model of bounded number of mistakes that assume
that the operator makes at most 2 mistakes whereas T3 in Figure 4.4 shows a model with
“bursty” mistakes that assume that mistakes occur in bursts of at least 2 but at most 3
mistakes at a time. These models are useful in capturing fine grained assumptions about
errors that are often the case in the study of human error or errors in physical systems.

Using the prototype implementation, Sankaranarayanan and Trivedi report on the
robustness of various inputs for this motivating example under the three transducer
error models. The property P is as shown in Figure 4.3 and the transducers T0 ≠ T2
are as shown in Figure 4.4. Table 4.1 reports the robustness values for various input
strings and the running time. Note that while our approach takes about 0.3 seconds for
a string of length 50, the prototype can be made much more e�cient to reduce the time
to compute robustness. Furthermore, discounted sum becomes smaller as the strings
grow larger while the average robustness value does not. Hence, average robustness is a
more useful measure due to this property in this particular example.
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4.3.2 Monitoring properties for patients with type-1 diabetes

We will now apply our ideas to the approximate pattern recognition problem for
analyzing clinical data for patients with type-1 diabetes. People with type-1 diabetes
are required to monitor their blood glucose levels periodically using devices such as
continuous glucose monitors (CGMs) that are calibrated multiple times each day using a
finger stick blood glucose meter. Data from CGMs is uploaded on-line and available for
review by clinicians during periodic doctor visits. Many applications such as Medtronic
Carelink(tm) support the automatic upload and visualization of this data by clinicians.

Physicians are commonly interested in knowing about hypoglycemic episodes (defined
as blood glucose Æ 70 mg/dl) su�ered by the patient especially during night times, about
prolonged extreme hyperglycemic events that can lead to diabetic ketacidosis (defined as
blood glucose Ø 300 mg/dl) and about instances of “rebound” hyperglycemia wherein
the blood glucose levels swing from hypoglycemia to extreme hyperglycemia within a rel-
atively short time window (Æ 2 hrs). We can write queries to retrieve data corresponding
the following patterns:

• Prolonged Hypoglycemia (P1): Do the blood glucose levels stay below 70 mg/dl
(hypoglycemia) for more than 3 hours continuously?[III]

• Prolonged Hyperglycemia (P2): Do the blood glucose levels remain above 300 mg/dl
(hyperglycemia) for more than 3 hours continuously?[IV]

• Rebound Hyperglycemia (P3): Do the blood glucose levels go below 70 mg/dl and
then rise rapidly up to 300 mg/dl or higher within 2 hours?[V]

Note that these patterns specify bad events that should not happen. A straightfor-
ward and strict pattern recognition approach based on specifying the properties above
will hide potentially bad scenarios that nearly match the desired pattern for two main
reasons:

• The CGM can be noisy and inaccurate. Its accuracy depends on many factors.
First, CGMs are designed to be more accurate for glucose levels near the hypo-
glycemia limit, since hypoglycemia is much more dangerous than hyperglycemia.
Also accuracy improves when the CGM is calibrated using a finger stick measure-
ment but then degrades over time. Moreover the CGMs can “dropout” periodically
giving out a very small value and resume working normally.

• The properties above are specified using cuto�s such as 70 mg/dl and 3 hours that
are somewhat arbitrary with di�erent opinions among physicians. For instance, a
clinician will consider a scenario wherein the patient’s blood glucose levels stays at
75 mg/dl for 2.75 hours as a serious case of prolonged hypoglycemia even though
such a scenario would not satisfy the property P1.

We propose to solve the approximate pattern recognition problem using the techniques
developed in this chapter. Here given a string w, a transducer T and a language L, we
are looking for a word wÕ such that wÕ

œ L and CT (wÕ, w) is as small as possible. In
other words, we wish to solve the threshold synthesis problem 4.1.3 for a language L that
is the complement of P1 (P2 or P3).

We partition the range of CGM outputs [40, 400] mg/dl into intervals of size 10
mg/dl over the range [40, 80] mg/dl and 20 mg/dl intervals over the remaining range
[80, 400] mg/dl. This yields a finite alphabet � where |�| = 20. For instance a60,70 œ �
represents a range [60, 70]mg/dl whereas a220,240 represents the [220, 240] mg/dl range.
CGMs provide a reading periodically at 5 minute intervals. This yields a string where
each letter describes the interval that contains the glucose value.

Transducer

The CGM error model is given by a transducer that considers possible errors that a
CGM can make (see Figure 4.5). The transducer has four states: Not Calib denot-
ing that no calibration has happened, Calib denoting a calibration event in the past,
DropoutNC a sensor drops out under the non calibrated mode and DropoutC a cali-
bration event has happened and sensor drops out. As mentioned earlier, we have variable
costs. It also associates a cost with these variable translation costs defined by a function
cost(lb, ub, lbÕ, ubÕ). These costs are set to be higher for ranges [lb, ub] that are close to

[III]
Such an event can lead to dangerous (and silent) night time seizures.

[IV]
Such an event can lead to a potentially dangerous condition called diabetic ketacidosis.

[V]
Rebound hyperglycemia can lead to large future swings in the blood glucose level, raising the burden

on the patient for managing their blood glucose levels.
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Not Calib CalibDropoutNC DropoutC

alb,ub | a40,50, cost(dropout)
calibrate | calibrate, 0

Á

Á

alb,ub | albÕ,ubÕ , cost([lb, ub], [lbÕ, ubÕ])

calibrate | calibrate, 0

alb,ub | albÕ,ubÕ , 2 ◊ cost([lb, ub], [lbÕ, ubÕ])
calibrate | calibrate, 0

Á

Á

alb,ub | a40,50, cost(dropout)
calibrate | calibrate, 0

Figure 4.5: Transducer model for capturing the errors made by continuous glucose mon-
itors.

hypoglycemia. Also note that we can model calibration events and the doubling of costs
if the sensor is in the calibrated mode. In practice, the sensor drifts over time after a
calibration event and this is not modeled in our study. Finally, there are states modeling
CGM dropouts that results in a constant signal in the range [40, 50] mg/dl. These events
are not true hypoglycemia but a temporary sensor malfunction.

Prop. Total Time Threshold Values synthesized
0 (0, 0.1] (0.1, 1.0] > 1.0 Œ

P1 4hr10m31s 0 8 2 95 1927
P2 2hr10m30s 0 28 13 0 1991
P3 2h0m9s 0 11 10 0 2011

Table 4.2: Table filled by Sankaranarayanan and Trivedi, showing total time taken per
property and number of matches for various ranges of robustness threshold.

Property Specifications

We specify the three di�erent properties described above formally using finite state
machines over the alphabet � as defined above. The prolonged hypoglycemia property
can be written as a regular expression: �ú(a40,50 + a50,60 + a60,70)36�ú which can be
easily translated into a NFA with roughly 38 states. The number 36 represents a period
of 180 minutes since CGM values are sampled at 5 minute intervals. Similarly, the other
two properties are also easily expressed as NFA.

Finally, we compose the transducer model with the properties P1, P2, P3 individually
and calculate the mean robustness. More precisely, for each sequence of measures w, we
compute the minimal threshold ‹ such that w can be rewritten by T at mean cost ‹
into some wÕ satisfying P1 (and P2, P3 respectively). The discounted sum robustness
is not useful in this situation since the patterns can match approximately anywhere in
the middle of a trace. Also, in most cases the discounted sum robustness value was very
close to zero for any discount factor < 1 or became forbiddingly large for discount factors
slightly larger than 1, due to the large size of the traces.

Patient Data

We used actual patient data involving nearly 50 patients with type-1 diabetes un-
dergoing a clinical trial of an artificial pancreas device, and nearly 40 nights of data per
patient, leading to an overall 2032 nights. Each night roughly corresponds to a 12 hour
period when CGM data was recorded [MCB+14]. This is converted to a string of size 140
(or slightly larger, depending on how many calibration events occurred). The threshold
synthesis problem 4.1.3 was solved for each of the input strings, and the results were
sorted by the threshold robustness value for properties P1, P2, P3.

Table 4.2 shows for each property, the total time taken to complete the analysis of the
full patient data, and the number of matches obtained corresponding to various threshold
values. The implementation provided by Sankaranarayanan and Trivedi is currently a
prototype that constructs a full product graph of the property automaton, transducer
and the input string converted into a “straight line” automaton. This results in roughly
4◊140◊38ú4 ƒ 80, 000 node graph for each individual trace, and is not quite e�cient in
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Figure 4.6: Examples of patterns with small robustness thresholds for properties P1 (left)
with robustness threshold value of 0.7 and P3 (right) with robustness value of 0.02. The
red triangles show calibration events.

terms of time to construct the product graph, prune it and calculate the mean robustness
value. Nevertheless, each trace takes less than 1 minute for property P1 and roughly half
that time for properties P2 and P3. As the table reveals, no single trace matches any
of the properties perfectly. However, our approach is more nuanced, and thus, allows us
to find numerous approximate matches that can be sorted by their robustness threshold
values. Note that many of the input traces yield a threshold value of Œ: this signifies
that no possible translation as specified by the transducer can cause the property to
hold. Figure 4.6 shows two of the approximate pattern matches obtained with a small
robustness value. Notice that the CGM values on the left do not satisfy the criterion
for a prolonged hypoglycemia for 3 hours (P1) in a strict sense due to a single point
at the end of the trace that is slightly above the 70 mg/dl threshold. Nevertheless, our
approach assigns this trace a very low robustness. Likewise, the plot on the right shows
a rapid rise from a hypoglycemia to a hyperglycemia within 120 minutes (P3) towards
the beginning, except that the peak value just falls short of the threshold of 300 mg/dl.

Note that related work in the area of monitoring cyber-physical [FP09, DM10, AH15,
DMP17] can be used to perform approximate pattern recognition using robustness of
temporal properties over hybrid traces. However, we note important di�erences that are
achieved due to the theory developed in this chapter. For one, the use of a transducer
can provide a nuanced model of how errors transform a trace, wherein the transformation
itself changes based on the transducer state. This is used in many ways in our application:

• It models the fact that the sensor is less error prone at smaller glucose values.
• It models events such as calibration that make the sensor more accurate for a period

of time after calibration.
• The use of transducers can also (roughly) model important CGM errors such as

dropouts and pressure-induced sensor attenuation [BCB+14]. A detailed transducer
model of CGM errors remains beyond the scope of this study but will likely be
desirable for applications to the analysis of patterns in type-1 diabetes data.
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Robust kernel synthesis

In this chapter, we carry the study of robustness a little further and consider prop-
erties on the robust kernel of a regular language with respect to an error model. Given
two regular languages N, L and a weighted transducer T , the robust kernel is the set of
words from N for which any perturbation performed by T that is in the ‹-neighborhood,
belongs to L. In other words, the robust kernel is the largest subset of N for which any
rewriting of T with a cost bounded by ‹, belongs to L. In particular, we investigate the
regularity and the emptiness of the robust kernel, denoted RobT (‹, L) in Chapter 4, for
a given C-transducer T , a non-negative rational ‹ and a regular language L represented
by a DFA. We show that the robust kernel is regular for the Sum measure, and checking
its emptiness is PSpace-C. For Mean, we show that it is not necessarily regular, and
checking its emptiness is undecidable. For DSum, we conjecture that the robust kernel
is non-regular and leave the emptiness problem open. Moreover, we provide su�cient
conditions for Mean and for DSum measures under which the robust kernel is regular and
computable, implying decidability of its emptiness.

5.1 Sum measure

To show robust kernel regularity, we rely on the construction of Theorem 2 of [ABK11]
in the context of weighted automata over the semi-ring (N fi {+Œ}, min, +), denoted
WA

min
sum in Section 1.4. The following lemma, use the same automata construction and

provides an upper bound on the number of states required to denote a threshold language
with a DFA.

To show robust kernel regularity, we rely on the following lemma:

Lemma 5.1.1

Let U be an n states WA
min
sum and ‹ œ N. The threshold language L‹(U) = {u :

[[U ]](u) Ø ‹}, where [[U ]](u) is defined as +Œ if there is no accepting run on
u, otherwise as the minimal sum of the weights along accepting runs on u, is
regular. Moreover L‹(U) is recognized by a DFA with O

!
(‹ + 2)n

"
states.

Proof First, let assume that U has universal domain (i.e. any word has some accepting
run), otherwise we complete it by assigning value ‹ to each word of its complement.
Then, [[U ]](u) Ø ‹ i� all the accepting runs on u have value at least ‹. We design a DFA

D that accepts exactly those words. Since the weights of U are non-negative, D just
has to monitor the sum of all runs up to ‹, by counting in its states. If Q is the set of
states of U , the set of states of D is 2Q◊{0,...,‹≠1,‹

+}, where ‹+ intuitively means any
value Ø ‹. We extend natural addition to X = {0, . . . , ‹ ≠ 1, ‹+

} by letting i + j = ‹+

i� i = ‹+, or j = ‹+, or i, j Ø ‹. Then, D is obtained by subset construction, there is a
transition P a

≠æ P Õ in D i� P Õ = {(qÕ, i + j) : (q, i) œ P · q a | j
≠≠≠≠æ

qÕ
}. A state P is accepting

if P fl
!
(Q \ F ) ◊ {0, . . . , ‹ ≠ 1}

"
= ?, where F are the accepting states of U .

Though simple, the latter construction does not give the claimed complexity, as the
number of states of D is 2n‹ . But the following simple observation allows us to get a
better state complexity. Consider an input word of the form uv. If after reading u, D
reaches some state P such that for some state q, there exists (q, i), (q, j) œ P such that
i < j, then if there is an accepting run of U from q on v, with sum s, there is an accepting
run on uv with sum i + s and one with sum j + s. Therefore if i + s Ø ‹, then j + s Ø ‹
and the pair (q, j) is useless in P . So, we can keep only the minimal elements in the states
of D, where minimality is defined with respect to the partial order (q, i) ∞ (p, j) if q = p
and i Æ j. Let us call Dopt the resulting “optimized” DFA. It states can be therefore seen
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⌥as functions from Q to {0, . . . , ‹, ‹+
}, so that we get the claimed state-complexity.

Lemma 5.1.2 ≠ Robust language regularity

Let T be a Sum-transducer, ‹ œ N and L a regular language. The language
of robust words RobT (‹, L) is regular. Moreover, if L is given by a DFA with
nL states and T have nT states, then RobT (‹, L) is recognizable by a DFA with
O

!
(‹ + 2)nT ◊nL

"
states.

⌥

Proof First, we show the regularity of the complement of RobT (‹, L) defined as

RobT (‹, L) = {u1 : ÷u2, SumT (u1, u2) < ‹ · u2 ”œ L}

First, let us assume that L is given by some NFA A, let A be a DFA recognizing the
complement of L. We first transform T into T ¢ A, which simulates T and controls that
the output words belong to L. In particular, it rejects whenever the rewriting by T is in
L. It is obtained as a product of T with A run on the output, with set of states QT ◊Q

A
.

It accepts whenever the final pair of states (p, q) is a pair of accepting states both for T
and A. Then, we have the following:

RobT (‹, L) = {u1 : ÷u2, Sum
T ¢A

(u1, u2) < ‹}

Now, by definition of Sum
T ¢A

(u1, u2) we have u1 œ RobT (‹, L) i� there exists a word u2
and an accepting run r over (u1, u2) such that Sum(r) < ‹. Therefore, we can project
T ¢ A on its input dimension (thus, we just ignore the outputs) and obtain a WA

min
sum that

we call U such that
RobT (‹, L) = {u1 : [[U ]](u1) < ‹}

where [[U ]](u1) is defined as +Œ if there is no accepting run of U on u1, and as the
minimal sum of the accepting runs on u1 otherwise. Complementing again, we get:

RobT (‹, L) = {u1 : [[U ]](u1) Ø ‹}

Now, we apply directly Lemma 5.1.1 on U to conclude for regularity. The state-
complexity is again given by Lemma 5.1.1 and the fact that U has nT ◊ nL states.

Theorem 5.1.3

Let T be a Sum-transducer, ‹ œ N given in binary and L a regular language
given as a DFA. Then, it is PSpace-C to decide whether there exists a robust
word u œ RobT (‹, L). The hardness holds even if ‹ is a fixed constant, T is
letter-to-letter[VI]and io-unambiguous[VII], and its weights are fixed constants in
{0, 1}.

Proof From Lemma 5.1.2, RobT (‹, L) is recognizable by a DFA with O
!
(‹ + 2)nT ◊nL

"

states, where nT is the number of states of T and nA the number of states of the DFA

defining L. Checking emptiness of this automaton can be done in PSpace (apply the
standard NLogSpace emptiness checking algorithm on an exponential automaton that
needs not be constructed explicitly, but whose transitions can be computed on-demand).
To show PSpace-hardness, we reduce the problem from [Koz77] of checking the non-
emptiness of the intersection of n regular languages given by n DFA A1, . . . , An, over
some alphabet �. In particular, we construct T , ‹ and a DFA A such that

u
i
L(Ai) ”= ?

i� there exists a robust word with respect to T ,‹ and L.
We define the alphabet as � = �fi{#1, . . . , #n, ù} where we assume that #1, . . . , #n, ù /œ
�, and construct a transducer T which reads a word uù of length k = |u| +1 with u œ �ú,
and rewrites it into either itself, or (#i)k for all i œ {1, . . . , n}. The identity rewriting has
total weight 0 while the rewriting into #k

i
has total weight 1 if u œ L(Ai), and 0 otherwise.

The transducer T is constructed as the disjoint union of n + 1 transducers T1, . . . , Tn, Tù.

[VI]
A transducer is letter-to-letter if � ™ Q ◊ � ◊ � ◊ Q.

[VII]
For all word pairs (u1, u2), there exists at most one run of T on u1 outputting u2.



Section 2 – Mean measure

—

“

—

“

61

⌥

For all i œ {1, . . . , n}, Ti simulates Ai on the input and outputs #i whenever it reads an
input letter di�erent from ù, with weight 0. When reading ù from an accepting state of Ai,
it outputs ù with weight 1, and if it reads ù from a non-accepting state, it outputs ù with
weight 0. Finally, Tù just realizes the identify function with weight 0. Note that T has
polynomial size in A1, . . . , An and it is letter-to-letter and (input,output)-deterministic.
Now we prove that a word uù is robust i� u œ

u
i
L(Ai). Assume that there exists a

robust word uù for the property L = (� fi {ù})ú and threshold ‹ = 0. Equivalently, it
means that for all rewritings – œ �ú, if SumT (uù, –) Æ 0 then – œ L. It is equivalent to
say that all its rewritings – satisfies either SumT (uù, –) Ø 1 or – œ L. By definition of
T , it is equivalent to say that all rewritings – are such that either – œ (#i)ú

ù for some
i and u œ L(Ai), or – = uù. Since T necessarily rewrites uù into uù, as well as into
(#1)k, . . . , (#n)k, where k = |u| + 1, the latter assumption is equivalent to saying that
u œ L(Ai) for all i œ {1, . . . , n}, concluding the proof.

5.2 Mean measure

Let us first establish non-regularity of the robust kernel.

Lemma 5.2.1

Given a regular language L, a Mean-transducer T and ‹ œ QØ0, the language
RobT (‹, L) is not necessarily regular, but recursive.

⌥

Proof Consider the language L = {u : ÷i œ N u[i] = a} on the alphabet � = {a, b},
i.e. the set of words on � that contain at least one a. Now, consider a (one state)
transducer T that can non-deterministically copy letters or change the current letter
from a to b with weight one. Now, if we fix ‹ to be equal to 1

2 , then all the translations
of u by T of cost less than 1

2 are included in L, i.e. each translation of u will contain
at least one letter a i� the number of a’s in u is larger than the number of b’s in u, i.e.
RobT ( 1

2 , L) = {u : |u|a > |u|b}, which is not regular. Note that in general RobT (‹, L) is
recursive because the membership problem to it, is decidable by Corollary 4.2.4 (applied
on a singleton language).

For Sum-transducers, the regularity of the robust kernel rely on the non-negativity of
its weights. However, in the case of Mean-transducers, being weighted over non-negative
integers or over Z does not change the problem. We use this fact to show that testing
the non-emptiness of the robust kernel is undecidable.

Theorem 5.2.2

Let L be a regular language, T be a Mean-transducer and ‹ œ QØ0. Determine
whether RobT (‹, L) ”= ? is undecidable. It holds even if T is io-unambiguous.

Proof The proof goes by reduction from the universality problem for a weighted au-
tomata A over (Z, min, +), known to be undecidable [CDH10b, ABK11]. We recall that
this problem asks whether all words have a finite value smaller than 0.
Given A = (Q, QI , QF , �, ⁄), we construct L as the set of non accepting runs of A union
�ú, the threshold ‹ as the maximal absolute weight of A and T such that:

MeanT =
€ {(u, u) ‘æ 0 : u œ �ú

}

{(u, Í) ‘æ xÍ + ‹|u| : Í œ AccRunA(u) · ⁄(Í) = xÍ}

We can construct T as the disjoint union between a single-state transducer with weights
zero realizing the identity, and a transducer that outputs all the possible runs of A on its
input, such that each T -transition simulating an A-transition t of value x (in A) has value
‹ + x, which is positive by definition of ‹. Hence T is indeed weighted over non-negative
numbers. Note that T is io-unambiguous: if the input and output are fixed, there is at
most one run of T . Now, we show that RobT (‹, L) = ? i� ’u [[A]](u) Æ 0, i.e.

’u1÷u2 œ L MeanT (u1, u2) Æ ‹ ≈∆ ’u [[A]](u) Æ 0

We have the following equivalences: ’u1÷u2 œ L MeanT (u1, u2) Æ ‹ i� for all u1, there
exists an accepting run Í of A on u1 such that MeanT (u1, Í) Æ ‹, i.e. SumT (u1, Í) Æ ‹|u1|
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and by definition of T , it is equivalent to asking that ⁄(Í) + ‹|u1| Æ ‹|u1|, i.e. ⁄(Í) Æ 0.
Hence, the latter statement is equivalent to the fact that for all words u1, there exists an
accepting run of A of value Æ 0. Since A takes the minimal value of all accepting runs on
u1, it is equivalent to saying that for all u1, [[A]](u1) Æ 0, i.e. A is universal, concluding
the proof.

5.3 Discounted sum measure

For DSum-transducer, we conjecture that RobT (‹, L) is in general non-regular. This
claim is substantiated by the fact that DSum-automata over Q and Ê-words have in general
non-regular cut-point languages, i.e. the set of words of DSum value below a given threshold
is in general non-regular [CDH10a]. With a proof similar to that of Theorem 5.2.2 for
Mean-transducers, it is possible to show that the universality problem for DSum-automata,
which is open to the best of our knowledge, reduces to checking the emptiness of the
robust language of a DSum-transducer.

Following an approach that originates from the theory of probabilistic automata,
it is has been shown that cut-point languages are regular when the threshold is ”-
isolated [CDH10a]. Formally, a threshold ‹ œ Q is ”-isolated, for ” > 0 and for some
DSum-transducer T if, for all accepting runs r of T , DSumT (r) œ [0, ‹ ≠ ”] fi [‹ + ”, +Œ).
It is isolated if it is ”-isolated for some ”. Our objective now is to show that when ‹
is isolated, then RobT (‹, L) is regular and one can e�ectively construct an automaton
recognizing it. We will also give a (possibly non-terminating) algorithm which, when
it terminates, returns an automaton recognizing RobT (‹, L), and which is guaranteed
to terminate whenever ‹ is ”-isolated for some ”. Towards these results, we first give
intermediate useful results. For a state q of T , we call continuation of q any run from q
leading to some accepting state of T . By extension, we also call continuation of a run r
any continuation of the last state of r. A transducer T is said to be trim if all its states
admits some continuation. Note that any transducer can be transformed into an equiv-
alent trim one in PTime, just by removing states that do not admit any continuation
(this can be tested in PTime).

Lemma 5.3.1

Let T be a trim DSum-transducer and ‹ œ Q. If ‹ is ”-isolated for some ”, then
there exists n̂ œ N such that any run r of length at least n̂ satisfies one of the
following properties:

1. DSum(r) Æ ‹ ≠ ” and any continuation rÕ of r satisfies DSum(rrÕ) Æ ‹ ≠ ”
2. DSum(r) Ø ‹ + ”/2 and any continuation rÕ of r satisfies DSum(rrÕ) Ø ‹ + ”.

⌥

Proof Let r be a run of length n of T . Since T is trim, there exists a continuation
rÕ of r, and moreover we have DSum(rrÕ) = DSum(r) + ⁄nDSum(rÕ). We have DSum(rÕ) Æq+Œ

i=0 ⁄iµ = µ(1 ≠ ⁄)≠1 where µ is the largest absolute weight of T . We let Bn =
⁄nµ(1 ≠ ⁄)≠1. Let n̂ be the smallest non-negative integer such that Bn̂ Æ ”/2 (it exists
since Bn is strictly decreasing of limit 0). Assume that the length of r is greater than n̂
i.e. n Ø n̂. As a consequence Bn Æ Bn̂. Since ‹ is ”-isolated, we have two cases:

i. If DSum(rrÕ) Æ ‹ ≠ ” then DSum(r) Æ ‹ ≠ ” since DSum(r) Æ DSum(rrÕ) by non-
negativity of the weights of T

ii. If DSum(rrÕ) Ø ‹ + ” then DSum(r) Ø ‹ + ” ≠ ⁄nDSum(rÕ). Moreover ⁄nDSum(rÕ) Æ

Bn Æ Bn̂ Æ ”/2 by construction. So ≠⁄nDSum(rÕ) Ø ≠”/2 which implies DSum(r) Ø

‹ + ”/2.
We have just shown that either DSum(r) Æ ‹ ≠ ” by (i) or DSum(r) Ø ‹ + ”/2 by (ii). We
prove now that, for all continuation rÕ of r we have (i) implies DSum(rrÕ) Æ ‹ ≠ ” and (ii)
implies DSum(rrÕ) Ø ‹ + ”. In the first case, assume by contradiction that (i) holds and
some continuation rÕ of r satisfies DSum(rrÕ) Ø ‹ + ”. As a consequence ⁄nDSum(rÕ) Ø 2”,
which is impossible since ⁄nDSum(rÕ) Æ Bn Æ Bn̂ Æ ”/2. In the second case, if DSum(r) Ø

‹ + ”/2 then any continuation rÕ of r satisfies DSum(rrÕ) Ø DSum(r) > ‹ + ”/2. Since ‹ is
”-isolated, we get DSum(rrÕ) Ø ‹ + ”.

We now show how to construct better and better regular under-approximations of
the set of non-robust words, show that they “finitely” converge to the set of non-robust
words when ‹ is isolated.
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Lemma 5.3.2

Let T be a DSum-transducer, ‹ œ Q and L a regular language given as a DFA. For
all n, we can construct an NFA An such that:

1. L(An) ™ L(An+1)
2. L(An) ™ RobT (‹, L) fl dom(T )

Moreover, if ‹ is isolated, there exists n̂ such that L(An̂) = RobT (‹, L) fl dom(T ).

Proof For all n, we let Bn = ⁄nW (1≠⁄)≠1, as in the proof of Lemma 5.3.1. A run r on a
pair (w1, w2) is called bad if DSum(r) Æ ‹, w2 ”œ L and r is accepting. Not that necessarily,
w1 ”œ RobT (‹, L). The run r is called dangerous if |r| Ø n and DSum(r) Æ ‹ ≠ Bn. A
dangerous run r can possibly be extended to a bad run rrÕ. It is possible i� there exists
a continuation rÕ of r such that the output of rrÕ is not in L. Note that the cost of rrÕ

does not matter because the largest value rÕ can achieve is Bn, keeping DSum(rrÕ) smaller
than ‹. Hence, when a dangerous run is met, only a regular property has to be tested to
extend it to a bad run. We exploit this idea in the automata construction. Namely, An

will accept words for which there exists a bad run of length n at most, or a dangerous
run of length n which can be extended to a bad run.
Automata construction. Let AccRunÆn

T
be the runs of T of length at most n, and Q

its set of states. We assume that for all (w1, w2) œ [[T ]], w2 ”œ L holds. This
can be ensured by taking the synchronized product of T (on its outputs) with an
automaton recognizing the complement of L. Let us now build the NFA An. Its
set of states is AccRunÆn

T
fi Q. Its transitions are defined as follows: for all T -runs

r of length n ≠ 1 at most ending in some state q, for all ‡ œ �Á, if there exists a
transition t of T from state q on reading ‡, then we create the transition r

‡
≠æ rt

in An. From any run r of length n, we consider two cases: if r is not dangerous,
then r has no outgoing transitions in An. If r is a dangerous run, then we add
some Á-transition to its last state: r

Á
≠æ p where p is the last state of r. Finally, we

add a transition from any state q to any state qÕ on ‡ in An whenever there is a
transition from q to qÕ on input ‡ in T . Accepting states are bad runs of AccRunÆn

T

and accepting states of T .
Correctness. Let us show that the family An satisfies the requirements of the lemma.

First, we show that L(An) ™ L(An+1). Let w œ L(An) and Í some accepting
run of An on w. To simplify the notations, we assume here in this proof that
runs of An, An+1 and T are just sequences of states rather than sequences of
transitions. By definition of An, Í can be decomposed into two parts Í1Í2 such
that Í1 œ (AccRunÆn

T
)ú and Í2 œ Qú with an Á-transition from the last state of Í1

to the first of Í2. We consider two cases. If |Í2| = 0, then Í = Í1 and by definition
of An+1, Í is still an accepting run of An+1. In the other case, there is a dangerous
run r of T such that Í1 can be written Í1 = r[..1]r[..2] . . . r[..n] where r[..i] is the
prefix of r of length i, and Í2 = q1q2 . . . , qk is a proper run of T . Note that q1
is the last state of r by construction of An. Moreover, rÍ2 is bad. Since r was
dangerous at step n, we also get that rq2 is dangerous at step n + 1, in the sense
that |rq2| = n + 1 and DSum(rq2) Æ ‹ ≠ Bn+1, by definition of Bn+1 and the fact
that DSum(r) Æ ‹ ≠ Bn. So, we get that the sequence of states Í1 · (rq2) · q2 . . . qk is
a run of An+1 on w is accepting in An+1 (note that rq2 here is a state of An+1 and
there is an Á-transition from (rq2) to q2), concluding the first part of the proof.
Now, suppose that ‹ is ”-isolated for some ”. Then, take n̂ as given by Lemma 5.3.1
and let us show that RobT (‹, L) fl dom(T ) ™ L(An̂) (the other inclusion has just
been proved for all n). Let w œ dom(T ) such that w ”œ RobT (‹, L). There exists
(w1, w2) œ RT and an accepting run r of T on it such that DSum(r) Æ ‹ and
w2 ”œ L. In other words, r is bad. If |r| Æ n̂, then r[..1]r[..2] . . . r[..|r|] is an
accepting run of An̂ on w, and we are done. Now suppose that |r| > n̂. Since
‹ is ”-isolated, we have DSum(r) Æ ‹ ≠ ”. By Lemma 5.3.1, we also get that
DSum(r[..n̂]) Æ ‹ ≠ ”. By definition of n̂ being the smallest integer such that
Bn̂ < ”/2, we get DSum(r[..n̂]) Æ ‹ ≠Bn̂, hence r[..n̂] is dangerous. We can conclude
since then r[..1]r[..2] . . . r[..n̂]r[n̂]r[n̂ + 1] . . . r[|r|] is an accepting run of An̂ on w.⌥

We also show that one can test whether given n, we have RobT (‹, L)fldom(T ) ™ L(An),
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as stated by the following lemma:

Lemma 5.3.3

Given a regular language N (given as some NFA), it is decidable to check whether
RobT (‹, L) fl dom(T ) ™ N holds.

⌥

Proof It su�ces to take the synchronized product of T , L (on the output) and N (on
the input), project the output, and test for the existence of path from an initial to a final
vertex of discounted sum Æ ‹.

Those results allow us to define the semi-algorithm of Figure 5.1.

ComputeRob(T, ‹, L)

1 For n from 1 to +Œ

2 compute An // as in Lemma 5.3.2
3 if RobT (‹, L) fl dom(T ) ™ L(An) return An // using Lemma 5.3.3

Figure 5.1: Semi-algorithm that computes the robust kernel for a given DSum-transducer
T , a non-negative rational ‹ and a regular language L represented by a DFA.

Lemma 5.3.4

The algorithm ComputeRob(T, ‹, L) satisfies the following properties:
1. if it terminates, then it returns an automaton recognizing RobT (‹, L) fl

dom(T ),
2. if ‹ is isolated, it terminates.

⌥

Proof If it terminates at steps n, then by Lemma 5.3.2 and the test at line 4 we know
that L(An) = RobT (‹, L) fl dom(T ), and if ‹ is isolated, the test will eventually succeed.

Note that the algorithm may terminate even if ‹ is not isolated. It is the case for
instance when the threshold is ”-isolated for “long” runs only, but not necessarily for
small runs, in the sense that it is only required that for some n, any accepting runs of
length at least n satisfies either DSum(r) Æ ‹ ≠ ” or DSum(r) Ø ‹ + ”.

As a corollary of Lemma 5.3.4, RobT (‹, L) is regular when ‹ is isolated: it su�ces
to run Algorithm ComputeRob, complement the obtained automaton and restrict it its
language to dom(T ).

Theorem 5.3.5

Let T be a DSum-transducer and ‹ œ Q and L a regular language. If ‹ is isolated,
then RobT (‹, L) is regular.

5.4 Related works

The framework of model measuring or robust model-checking has been studied with
various approaches in [MRT11, HO13, CHJS15] for diverse formalisms and measures.

The DSum measure is one the most popular in the literature to model dynamic systems.
In our case, to ensure the regularity of the robust kernel, we considered DSum weighted
automata that are isolated. This technique have been used similarly in [CDH10a] in the
context of infinite words. Another way to recover decidability results would be to consider
structural properties. In fact, the functional fragment of DSum weighted automata, i.e.
the subclass that defined automata which associate at most one value for all input, also
have decidable quantitative language inclusion [FGR15, BHO15] as well as the fragment
of finite valued when the discount factor is of the form 1

n
for some n œ N ”=0 [FGR14].

However, the general statement is related to open problems in theoretical computer
science that are known to be challenging as noticed in [BHO15].
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The Mean is also a classical measure of the literature, more particularly in the context
of infinite words. The window semantics similar to the one defined in Section 5.2 can
be found in [HPR18] in the context of mean pay-o� games. Note that, Mean weighted
automata over infinite words, which is the case for mean pay-o� games, are known to
be prefix-independent and that is not the case with finite words. Again, bounding the
number of values associated to any input is also a promising restriction to get decidability
results. Since Mean weighted automata belongs to the class of group automata, they
admit a decomposition into functional Mean weighed automata (as proved in [FGR14]),
for which the language inclusion is decidable [FGR15].
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Specification languages for structural

properties

Traditionally, the model-checking problem in computed-aided verification rely on reg-
ular automata [VW86, CHVB18]. Extensions have been developed for input/output
systems, the most popular formalism are transducers and weighted automata. However,
classical decision problems such as inclusion and equivalence, become quickly undecidable
for those formalisms. It is also well known that automata-based techniques su�er from
state explosions, even for the regular models. To retain feasibility and tractability of the
model-checking, the verification community often fall back on automata subclasses. Note
that, the relevance of a subclass may be conditioned by the existence of an e�cient deci-
sion procedure for the subclass-membership. Since structural pattern characterizations
are practical to implement, the literature counts many patterns and ad-hoc methods for
determining whether an automaton fulfills them or not.

Our goal in this chapter is to introduce a specification framework which allows us to
express the structural patterns of the literature as well as new ones. Hence, we provide a
generic logic to define properties of automata with outputs in some monoid, in particular
the set of predicates talking about the output values is parametric. Then, we consider
three particular automata models (regular automata, transducers and automata weighted
by integers) and instantiate the generic logic for each of them. We give tight complexity
results for the model-checking problem of three logics and we study their expressiveness
by expressing classical structural patterns characterizing for instance unambiguity in the
case of finite automata, determinizability and finite-valuedness in the case of transducers
and automata weighted by integers.

6.1 A generic specifications framework

In this section, we introduce a generic pattern logic. It is generic in the sense that
the predicates talking about output monoid values are parameters. It is built over four
kind of variables, namely path, state, input and output variables. More precisely, we
let XP = {fi, fi1, . . . }, XQ = {q, q1, p . . . , }, XI = {u, u1, . . . } and XO = {v, v1, . . . } be
disjoint and countable sets of resp. path, state, input and output variables. We define
Terms(XO, ü, 0) as the set of terms built over variables of XO, a binary function symbol
ü (representing the monoid operation) and constant symbol 0 (representing the neutral
element of the monoid).

Syntax of PL

The logic syntax is parametrized by a set of predicates O, called output predicates.
For all p œ O, we denote by –(p) its arity. Output predicates of arity 0 are called constant
symbols. Predicates talking about states, paths and input words are however fixed in
the logic.

Definition 6.1.1

A pattern formula Õ over a set of output predicates O is of the form[I]:

Õ ::= ÷fi1 : p1
u1|v1
≠≠≠æ q1, . . . , ÷fin : pn

un|vn
≠≠≠≠æ qn C
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where for all 1 Æ i Æ n, fii œ XP and they are all pairwise di�erent, pi, qi œ XQ,
ui œ XI , vi œ XO, and C is a Boolean combination of atoms amongst

Input predicates : u ı uÕ
| u œ L | |u| Æ |uÕ

| u, uÕ
œ XI

Output predicates : p(t1, . . . , t–(p)) p œ O, ti œ Terms(XO, ü, 0)
State predicates : init(s) | final(s) | s = sÕ q, qÕ

œ XQ

Path predicates : fi = fiÕ fi, fiÕ
œ XP

where u, uÕ
œ {u1, . . . , un}, s, sÕ

œ {p1, . . . , pn, q1, . . . , qn}, fi, fiÕ
œ {fi1, . . . , fin} and

L is a regular language of words over � (assumed to be represented as a DFA).
The sequence of existential quantifiers before C in Õ is called the prefix of Õ. We
denote by PL[O] the set of pattern formulas over O, and by PL

+[O] the fragment
where output predicates does not occur under an odd number of negations.

The size of a formula Õ, denoted |Õ|, is the number of its symbols plus the number
of states of all DFA representing the membership predicates. We denote by Var(Õ) the
variables occurring in any pattern formula Õ, and by VarP (Õ) (resp. VarQ(Õ), VarI(Õ),
VarO(Õ)) its restriction to path (resp. state, input, output) variables. Finally, we define
some macros for convenience as the state distinctness q ”= qÕ def= ¬(q = qÕ), the input
equality u = uÕ def= u ı uÕ

· uÕ
ı u, the input size comparisons |u| = |uÕ

| def= |u| Æ

|uÕ
| · |uÕ

| Æ |u| and |u| < |uÕ
| def= ¬(|uÕ

| Æ |u|).

Semantics of PL
To define the semantics of a pattern formula Õ, we first fix some monoid M =

(DM, üM, 0M) together with an interpretation pM of each output predicates p œ O

of arity –(p), such that pM
œ DM if –(p) = 0 and pM

™ D–(p)
M otherwise. Given

a valuation ‹ : XO æ DM, the interpretation over M can be inductively extended to
terms t œ Terms(XO, ü, 0) by letting 0‹,M = 0M, (t1 ü t2)‹,M = t‹,M

1 üM t‹,M
2 and

x‹,M = ‹(x).
Then, a formula Õ œ PL[O] is interpreted in an automaton with outputs A over M

as a set of valuations [[Õ]]A of Var(Õ) which we now define. Each valuation ‹ œ [[Õ]]A
maps state variables to states of A, path variables to paths of A, etc. Such a valuation
‹ satisfies an atom u ı uÕ if ‹(u) is a prefix of ‹(uÕ), u œ L if ‹(u) œ L, |u| Æ |uÕ

| if
|‹(u)| Æ |‹(uÕ)|. Similarly for state predicates, ‹ satisfies an atom init(q) if ‹(q) is initial,
final(q) if ‹(q) is final and q = qÕ of ‹(q) = ‹(qÕ). Given a predicate p œ O, an atom
p(t1, . . . , t–(p)) is satisfied by ‹ if (t‹,M

1 , . . . , t‹,M
–(p)) œ pM. Finally, ‹ satisfies fi = fiÕ of

‹(fi) = ‹(fiÕ). The satisfiability relation is naturally extended to Boolean combinations of
atoms. Finally, assume that Õ is of the form ÷fi1 : p1 u1 | v1

≠≠≠≠≠≠æ
q1, . . . , ÷fin : pn

un | vn
≠≠≠≠≠≠≠æ

qn C,
we say that A satisfies Õ, denoted by A |= Õ, if there exists a valuation ‹ of Var(Õ) such
that for all i œ {1, . . . , n}, ‹(fii) : ‹(pi) ‹(ui) | ‹(vi)

≠≠≠≠≠≠≠≠≠≠≠≠æ
‹(qi) and ‹ satisfies C (i.e. ‹ |= C).

Given a pattern formula Õ and an automaton with outputs A, the model-checking problem
consists in deciding whether A satisfies Õ, i.e. A |= Õ.

Example 6.1.2

An automaton is not deterministic if there exists an Á transition or if there exists
two distinct outgoing transitions labeled with the same input letter of �. This can
be expressed in PL[?] by the following formula.

÷fi : p
e
≠æ pÕ, ÷fi1 : q

‡
≠æ q1, ÷fi2 : q

‡
≠æ q2

!
e œ {Á} · p ”= pÕ"

‚
!
‡ œ � · q1 ”= q2

"

Example 6.1.3

An automata is ambiguous i� if there exists two distinct accepting runs labeled
over the same input word. This can be expressed in PL[?] by the following formula.

÷fi1 : p1
u
≠æ q1, ÷fi2 : p2

u
≠æ q2 fi1 ”= fi2 · init(p1) · final(q1) · init(p2) · final(q2)

[I]
To lighten the notations of quantifications of the form ÷fi : p u | v

≠≠≠≠æ q, we may not write the input

variable u nor the output variable v nor both when it is not used.



Section 2 – Pattern logic for finite automata

—

“

—

“

71

6.2 Pattern logic for finite automata

Finite automata can be seen as automata with outputs in a trivial monoid (with a
single element). As the monoid is trivial, there is no need for predicates over it and so
we specialize our pattern logic into PLnfa def= PL[?].

6.2.1 Syntax, semantics and model-checking problem of PLnfa

As the generic pattern logic, formulas of the following logic for NFA are build VarP

of path variables, VarQ of state variables, etc.

Definition ≠ Pattern logic for NFA

The logic PLnfa = PL[?] is the set of formulas of the form

Õ ::= ÷fi1 : p1
u1
≠æ q1, . . . , ÷fin : pn

un
≠≠æ qn C

C ::= ¬C | C ‚ C | u ı uÕ
| u œ L | |u| Æ |uÕ

| | init(s) | final(s) | s = sÕ
| fi = fiÕ

where for all i ”= j, fii ”= fij , L denote regular languages over � (assumed to
be represented as DFA), u, uÕ

œ {u1, . . . , un}, s, sÕ
œ {p1, . . . , pn, q1, . . . , qn} and

fi, fiÕ
œ {fi1, . . . , fin}.

The model-checking problem asks if a given NFA A satisfies a given PLnfa-formula
Õ. Theorem 6.2.1 is proved in Section 7.2 since it involves new notions, in particular an
intermediate logic equivalent to the pattern logic.

Theorem 6.2.1

The model-checking problem of NFA against formulas in PLnfa is PSpace-C. It
is in NLogSpace-C when the formula is fixed.

6.2.2 Examples of NFA subclasses

As a yardstick to measure the expressiveness of PLnfa, we have considered the struc-
tural properties of NFA studied in two classical papers [WS91, AMR11]. The authors of
these two papers provide a PTime membership algorithms for k-ambiguity, finite ambi-
guity, polynomial ambiguity and exponential ambiguity (with as applications the approx-
imation of the entropy of probabilistic automata for instance). The solutions to these
membership problems follow a recurrent schema: one defines (1) a pattern that identifies
the members of the class and (2) an algorithm to decide if an automaton satisfies the
pattern. In fact, all these membership problems can be reduced to the model-checking
problem of PLnfa using a constant space reduction. The proof of this theorem is ob-
tained by showing how the patterns identified in [WS91], can be succinctly and naturally
encoded into (constant) PLnfa formulas.

Class of k-ambiguous automata

An automaton is said to be k-ambiguous if it admits at most k distinct accepting
runs for all input word. Hence, it is not k-ambiguous i� it satisfies the following PLnfa
formula:

÷fi1 : p1
u
≠æ q1

...
÷fik+1 : pk+1

u
≠æ qk+1

Q

a
fi

1ÆiÆk+1
init(pi) · final(qi)

R

b ·

Q

a
fi

1Æi<jÆk+1
fii ”= fij

R

b

We have only depicted the input word variables as the output variables are useless.

Class of finitely ambiguous automata

An automaton is said to be finitely ambiguous if there exists k œ N such that it is
k-ambiguous. As shown in [WS91], an automaton has a finite ambiguity i� it does not
satisfy the pattern of Figure 6.1, expressible by the following PLnfa formula:

÷fiI : qI ≠æ q1, ÷fi : q1
u
≠æ q2, ÷fiF : q2 ≠æ qF

÷fi1 : q1
u
≠æ q1, ÷fi2 : q2

u
≠æ q2

init(qI) · q1 ”= q2 · final(qF )
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qI

q1 q2

qF

u

u

u

Figure 6.1: Pattern of non-finite ambiguity

qI q qF

u

u

Figure 6.2: Pattern of non-polynomial
ambiguity

Class of polynomially ambiguous automata

An automaton is said to be polynomially ambiguous if the number of accepting runs
is at most polynomial in the length of the input word. Formally, there exists c œ N such
that for all u œ �ú, the number of accepting runs is upper bounded by |u|

c. As shown
in [WS91], an automaton with output has a polynomial ambiguity i� it does not satisfy
the pattern[II] of Figure 6.2 expressible by the PLnfa formula:

÷fiI : qI ≠æ q,
÷fi1 : q

u
≠æ q,

÷fi2 : q
u
≠æ q,

÷fiF : q ≠æ qF init(qI) · fi1 ”= fi2 · final(qF )

Class of exponentially ambiguous automata

An automaton is said to be exponentially ambiguous if the number of accepting runs
is at most exponential in the length of the input word.

We claim that an automaton is exponentially ambiguous i� it does not contain an
accessible and co-accessible cycle on the empty word. The left-to-right direction is proved
by contrapositive. Suppose that there exists such cycle denoted fic on a state q. Since fic

is accessible, there exists fiI a run from some initial state to q over u1 and since fic is co-
accessible, there exists also fiF a run from q to some final state over u2. For all n œ N we
can define fin

def= fiIfin
c

fiF such that fin ”= fim for all n ”= m. For the right-to-left direction,
assume that the automaton does not have any Á-cycle. Each run cannot have more than
card(Q) consecutive Á-transitions otherwise that would contradict the non-existence of
an Á-cycle. So, for all word u œ �ú, each run u have a length bounded by |u|card(Q)
which implies that there are at most card(Q)|u|card(Q) runs over u.

Hence, an automaton is exponentially ambiguous i� it does not satisfy the following
PLnfa formula:

÷fiI : qI ≠æ q, ÷fic : q
e
≠æ q, ÷fiF : q ≠æ qF init(qI) · final(qF ) · e œ {Á}

Corollary

Let k œ N be a constant. The membership problem to the classes of k-ambiguous,
finitely ambiguous, polynomially ambiguous and exponentially ambiguous NFA

is in NLogSpace.

⌥

Proof The proof goes by a constant space reduction to the model-checking problem of
PLnfa. For each membership problem, our reduction copies (in constant space) the NFA

and considers the model-checking for this NFA against a constant PLnfa formula (one for
each class). So, NLogSpace membership comes as a corollary of Theorem 6.2.1.

6.3 Pattern logic for transducers

Transducers are automata with outputs in a free monoid (�ú, ·, Á) and therefore define
subsets of �ú

◊ �ú. Since our general pattern logic can test for output equalities (by
repeating twice an output variable in the quantification part), the model-checking is
easily shown to be undecidable by encoding Post Correspondence Problem.

[II]
As in the formulas, we have only depicted input variables that matter.
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Theorem

The model-checking problem of transducers against formulas in PL[?] is unde-
cidable.

⌥

Proof We encode the Post Correspondence problem (PCP here after). Given a set S
of dominoes over some (non-unary) alphabet �, defined as S = {(u1, v1), . . . , (un, vn)},
we construct the transducer Tpcp of Figure 6.3, which defines the following subset of
{1, . . . , n}

ú
◊ �ú:

’k Ø 0
€

i1...ikœ{1,...,n}k

{(i1 . . . ik, ui1 . . . uik )} fi
)

(i1 . . . ik, vi1 . . . vik )}

The solution of PCP is a finite sequence x1 . . . xN where each xi are in {1, . . . , n}

such that N > 0 and ux1 . . . uxN = vx1 . . . vxN . The set S admits x1 . . . xN has
solution i� there exists two distinct accepting runs over the non-empty input word
x1 . . . xN which have the same output. Hence, S has a solution i� the PL[?] formula
÷fi : q u | v

≠≠≠≠æ
q, ÷fiÕ : qÕ u | v

≠≠≠≠æ
qÕ, q ”= qÕ

· u /œ {Á} is satisfied by Tpcp.

(Tpcp)

i œ {1, . . . , n} ui i œ {1, . . . , n} vi

Figure 6.3: The transducer Tpcp which is non-deterministic

To obtain a decidable logic for transducers, we exclude equality tests on the output
words in the logic. However, as we will see, we can still have inequality tests ”= as long
as they do not occur under an odd number of negations in the formula. We also allow
to test (non) membership of output word concatenations to a regular language, as well
as comparison of output word concatenations w.r.t. their length.

6.3.1 Syntax, semantics and model-checking problem of PLtrans

We have shown that having the equality (and more generally ı) predicate for outputs
for transducer yields an undecidable model-checking. Here, we define PLtrans as the
instance of the positive fragment of the pattern logic PLtrans def= PL

+[{”ı, œ N, /œ N, Æ, <}]
for all regular language N over � (assumed to be represented by some DFA).

Definition ≠ Pattern logic for transducers

The logic PLtrans is the set of formulas of the form

Õ ::= ÷fi1 : p1
u1|v1
≠≠≠æ q1, . . . , ÷fin : pn

un|vn
≠≠≠≠æ qn C

C ::= ¬C | C ‚ C | u ı uÕ
| u œ L | |u| Æ |uÕ

| | init(s) | final(s) | s = sÕ
| fi = fiÕ

|

t ”ı tÕ
| t œ N | |t| Æ |tÕ

|

where for all 1 Æ i < j Æ n, fii ”= fij and vi ”= vj (no implicit output equality
tests), L (resp. N) denote regular languages over � (resp. �) (assumed to be
represented as DFA), u, uÕ

œ {u1, . . . , un}, s, sÕ
œ {p1, . . . , pn, q1, . . . , qn}, t, tÕ

œ

Terms({v1, . . . , vn}, ·, Á), fi, fiÕ
œ {fi1, . . . , fin}, and t ”ı tÕ does not occur under an

odd number of negations.

For convenience, we define the syntactic sugar for non-equality of outputs t ”= tÕ def=
t ”ı tÕ

‚ tÕ
”ı t. Also, to express that words t, tÕ mismatch together, that is when there

exists a position i such that t[i] ”= tÕ[i] we define t ≠◊≠ tÕ def= t ”ı tÕ
· tÕ

”ı t.
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Theorem 6.3.1

The model checking of transducers against formulas in PLtrans is PSpace-C. It
is in NLogSpace-C when the formula is fixed.

Theorem 6.3.1 is proved in Section 7.3.

6.3.2 Using an alternative delay in PLtrans

Many properties of automata with outputs over a group are based on a notion of
delays between output values. In the case of transducers, this is formalized for any words
v1, v2 by delay(v1, v2) = (w1, w2) such that v1 = vw1 and v2 = vw2 where v is the
longest common prefix of v1 and v2. It is for instance used to characterize the sequential
functions, i.e. functions definable by input deterministic transducer.

An interesting property of the delay is that, if by adding a pair of su�xes to the
pair of output words the delay change, then we can highlight two witness which di�er
arbitrarily by iterating the same pair of su�xes. Let del”=(v1, vÕ

1, v2, vÕ
2) def= delay(v1, v2) ”=

delay(v1vÕ
1, v2vÕ

2). However, this notion of the delay is not directly expressible in our logic.
We show here that an equivalent notion can be used, that we call Sdelay (for “simpler”
delay). We define Sdel”=(v1, vÕ

1, v2, vÕ
2) def= |vÕ

1| ”= |vÕ
2| ‚

!
vÕ

1vÕ
2 ”= Á · v1 ≠◊≠ v2

"
. Lemma 6.3.2

shows that for any word v1, vÕ
1, v2, vÕ

2, if Sdel”=(v1, vÕ
1, v2, vÕ

2) holds then del”=(v1, vÕ
1, v2, vÕ

2)
holds. The converse is not true in general but, by Lemma 6.3.3 if del”=(v1, vÕ

1, v2, vÕ
2)

holds then Sdel”=(v1(vÕ
1)i, vÕ

1, v2(vÕ
2)i, vÕ

2) holds for any i œ N su�ciently big. Note that,
the predicate Sdel”= is definable in PLtrans.

The structural property characterizing the class of multi-sequential functions from [CS86,
JF18], uses the predicate Sdel”= and then can be directly encoded in PLtrans as presented
in the next subsection. It is not the case of the twinning property from [BCPS03, Cho77b,
WK95] (characterizing the class of sequential functions). However, using predicate Sdel”=
instead of del”= in the definitions of the twinning property give an equivalent characteri-
zations.
Lemma 6.3.2

For all v, x, w, y œ �ú we have the following property:

Sdel”=(v, x, w, y) =∆ del”=(v, x, w, y)

⌥

Proof If xy ”= Á · v ≠◊≠ w from the Sdel”= hypothesis, then at least one of x, y is non-
empty. Thus by iterating the loop once, the delay will accumulate after the mismatch
between v and w. In other words, we have that delay(v, w) ”= delay(vx, wy).
Else if |x| ”= |y| · v ı w the proof goes by the way of absurd. Note that the case where
w ı v can be proved similarly. Suppose that delay(v, w) = (Á, z) = delay(vx, wy) for
some z. Then, we have that x ı zy. Consider the following two cases. If |x| Æ |z|,
we fix z = xzÕ. Then (Á, z) = delay(x, zy) = (Á, zÕy). Hence, z = zÕy, which is a
contradiction since |xzÕ

| ”= |zÕy|. Otherwise if |x| > |z|, we fix y = y1y2 and x = zy1.
Then (Á, z) = delay(x, zy) = (Á, y2). Hence, z = y2, which is a contradiction since
|zy1| ”= |y1y2|.

Lemma 6.3.3

For all v, x, w, y œ �ú, there exists N œ N such that:

’i Ø N del”=(v, x, w, y) =∆ Sdel”=(v(x)i, x, w(y)i, y)

Proof If |x| ”= |y| then the statement trivially holds. Otherwise, we have that xy ”= Á
from the del”= hypothesis, which implies that both x, y are non-empty assuming |x| = |y|.
Suppose by the way of absurd that del”=(v, x, w, y) holds and there is no mismatch between
vxi and wyi for all i. This implies that by iterating loops an infinite number of times
we obtain the equality vxÊ = wyÊ. W.l.o.g. assume that v is a prefix of w, i.e. w = vz
for some z (the other case is symmetric). Let k œ N taken such that |xk

| > |z| and
|xk≠1

| Æ |z|. Note that k exists since x ”= Á. Then obtain the decomposition x = x1x2
from xk≠1x1 = z and the decomposition y = y1y2 where |y1| = |x2| from xk = zy1.
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⌥

Using xÊ = zyÊ and |y| = |x|, we get xk+1 = zy1y2y1. In particular x = x1x2 = y2y1
and y = y1y2 = x2x1. Therefore, delay(v, w) = delay(v, vz) = (Á, z) = (Á, xk≠1x1).
On the other hand, we have that delay(vx, wy) = delay(x, zy) = delay(x, xk≠1x1y) =
delay(x, xk≠1x1x2x1) = delay(Á, xk≠1x1) = delay(v, w) contradicting del”= hypothesis.
Hence, there exists i such that there is a mismatch between vxi and wyi. To conclude we
remark that if vxi and wyi mismatch at some position, then vxi+1 and wyi+1 mismatch
as well (at the same position).

In [DJRV17], the authors introduce the branching twinning property (characterizing
the class of k-sequential functions) which the twinning property is a special case. The
branching twinning property is defined with the use of the del”= predicate and we prove
here that Sdel”= allows us to define an equivalent characterization. Note that, while the
twinning property is defined with a predicate del”= over words, its generalization is defined
with such predicate over terms of words. Lemma 6.3.3 cannot handle terms and thus is
not su�cient to show that the branching twinning property is expressible in PLtrans. We
now generalize Lemma 6.3.3.

Lemma 6.3.4

For all v1, . . . , vm, w1, . . . , wm, x1, . . . , xm, y1, . . . , ym œ �ú, there exists N œ N
such that for all i Ø N we have that:

del”=(v1 . . . vm, xm, w1 . . . wm, ym) Hypothesis : H1
·

’1 Æ ¸ < m, del=(v1 . . . v¸, x¸, w1 . . . w¸, y¸) Hypothesis : H2

»

Sdel”=(v1(x1)i . . . vm(xm)i, xm, w1(y1)i . . . wm(ym)i, ym)

⌥

Proof We fix Vj = v1xj

1 . . . vm≠1xj

m≠1vm, X = xm and Wj = w1yj

1 . . . wk≠1yj

k≠1wm,
Y = ym for all j œ N. If |X| ”= |Y | then the statement trivially holds. Otherwise, we can
show the following properties:

1. For all 1 Æ j < m, we that that |xj | = |yj | by the contrapositive of Lemma 6.3.2
applied on H2.

2. We have that XY ”= Á due to H1, which implies that both xm and ym are non-empty
since |X| = |Y |.

3. Item (1) implies that |VjXi
| ≠ |WjY i

| = |V0| ≠ |W0| for all i, j œ N. We define
S = |V0| ≠ |W0|.

4. Lemma 6.3.3 applied on delay(V0, W0) ”= delay(V0X, W0Y ) ensures that, for some
M there is a mismatch between V0Xi and W0Y i for all i Ø M since |X| = |Y | and
XY ”= Á.

In the rest of the proof, we suppose that S Ø 0 (the case |W0| Ø |V0| can be treated
similarly). By (3) we have that |VjXi

| = |WjY i
| + S for all i, j œ N . In order to deal

with words of same length we define Z as the su�x of Xi such that |Z| = S. Note that
Z is well defined if i Ø S since |X| > 0 by (2). Thus, we obtain that V0Xi

”= W0Y iZ
for all i Ø max{M, S} by (3). Applying the contrapositive of Theorem 4.3. of [Saa15], if
VjXi

”= WjY iZ for some j œ N then there exists M Õ such that VjXi
”= WjY iZ for all

j Ø M Õ. Hence, ViXi
”= WiY iZ for each i Ø max{M, M Õ, S}. Due to |ViXi

| = |WiY iZ|,
the inequality holds by mismatching. Finally, since Z is su�x of Xi, there is also a
mismatch between ViXi and WiY i for all i Ø max{M, M Õ, S} which concludes the proof.

6.3.3 Examples of transducer subclasses

We review some of the main transducer subclasses studied in the literature. We
refer the reader to the mentioned references for the formal definitions. As for the NFA

subclasses of the previous section, deciding them usually goes in two steps: (1) identify
a structural pattern characterizing the property, (2) decide whether such a pattern is
satisfied by a given transducer.
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Class of sequential transducers

A transducer is said to be sequential if its function can be defined by an input deter-
ministic transducer. As shown in [BCPS03, Cho77b, WK95], a transducer is sequential
i� it satisfies the twinning property i� it does not satisfy the pattern of Figure 6.4) which
is equivalent to the negation of the following PLtrans formula, thanks to Lemmas 6.3.2
and 6.3.3:

÷fi1 : q1
u|v1
≠≠≠æ p1, ÷fiÕ

1 : p1
u

Õ|vÕ
1

≠≠≠æ p1, ÷fiÕÕ
1 : p1

u
ÕÕ|vÕÕ

1
≠≠≠≠æ r1

÷fi2 : q2
u|v2
≠≠≠æ p2, ÷fiÕ

2 : p2
u

Õ|vÕ
2

≠≠≠æ p2, ÷fiÕÕ
2 : p2

u
ÕÕ|vÕÕ

2
≠≠≠≠æ r2

fi
Y
_]

_[

init(q1) · final(r1)
init(q2) · final(r2)
Sdel”=(v1, vÕ

1, v2, vÕ
2)

q1 p1 r1 q2 p2 r2
u v1

uÕ vÕ
1

uÕÕ vÕÕ
1 u v2

uÕ vÕ
2

uÕÕ vÕÕ
2

Figure 6.4: Pattern of the twinning property, where delay(v1, v2) ”= delay(v1vÕ
1, v2vÕ

2)

Class of k-sequential transducers

A transducer is said to be k-sequential if its function can be defined by a disjoint
union of k sequential transducers [DJRV17]. As shown in [DJRV17], a transducer is k-
sequential i� it satisfies the branching twinning property i� it does not satisfy the pattern
of Figure 6.5 which is equivalent to the negation of the following PLtrans formula.

÷
k

i=1fii,0 : qi≠1,0
ui,0|vi,0
≠≠≠≠≠æ qi,0

...

÷
k

i=1fii,k : qi≠1,k

ui,k|vi,k
≠≠≠≠≠æ qi,k

÷
k

i=1fiÕ
i,0 : qi,0

u
Õ
i,0|vÕ

i,0
≠≠≠≠≠æ qi,0
...

÷
k

i=1fiÕ
i,k

: qi,k

u
Õ
i,k|vÕ

i,k
≠≠≠≠≠æ qi,k

fi

j ”=jÕ

fl

1ÆmÆk

fi
Iw

1Æ¸Æm
u¸,j = u¸,jÕ · uÕ

¸,j
= uÕ

¸,jÕ

Sdel”=(v1,j ...vm,j , vÕ
m,j

, v1,jÕ ...vm,jÕ , vÕ
m,jÕ)

Lemma 6.3.2 ensures that this PLtrans formula captures the complement of the class of
k-sequential transducers. We show now that any transducer which satisfies this PLtrans
formula cannot be k-sequential. Consider a transducer T which does not satisfy the
branching twinning property of order k, i.e. it satisfies the pattern of Figure 6.5. Then
we have that:

fi

j ”=jÕ

fl

1ÆmÆk

fi
Iw

1Æ¸Æm
u¸,j = u¸,jÕ · uÕ

¸,j
= uÕ

¸,jÕ

del”=(v1,j . . . vm,j , vÕ
m,j

, v1,jÕ . . . vm,jÕ , vÕ
m,jÕ)

For all 0 Æ j and jÕ
Æ k, we choose m minimal, i.e. m which verifies that:

fi

1Æ¸<m

del=(v1,j . . . v¸,j , vÕ
¸,j

, v1,jÕ . . . v¸,jÕ , vÕ
¸,jÕ)

By Lemma 6.3.4 there exists i œ N su�ciently big to ensure:

fi

j ”=jÕ

fl

1ÆmÆk

fi
Iw

1Æ¸Æm
u¸,j(uÕ

¸,j
)i = u¸,jÕ(uÕ

¸,jÕ)i
· uÕ

¸,j
= uÕ

¸,jÕ

Sdel”=(v1(x1)i . . . vm(xm)i, xm, w1(y1)i . . . wm(ym)i, ym)

Since, our PLtrans formula quantify the words existentially, T would be able to satisfies
it.
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q0,0 q1,0 q2,0 qk,0

q0,1 q1,1 q2,1 qk,1

q0,k q1,k q2,k qk,k

u1,0 v1,0

uÕ
1,0 vÕ

1,0

u2,0 v2,0

uÕ
2,0 vÕ

2,0 uÕ
k,0 vÕ

k,0

u1,1 v1,1

uÕ
1,1 vÕ

1,1

u2,1 v2,1

uÕ
2,1 vÕ

2,1 uÕ
k,1 vÕ

k,1

u1,k v1,k

uÕ
1,k

vÕ
1,k

u2,k v2,k

uÕ
2,k

vÕ
2,k

uÕ
k,k

vÕ
k,k

Figure 6.5: Pattern of the branching twinning property property where there are
j ”= jÕ such that for all m œ {1, . . . , k}, if for every 1 Æ ¸ Æ m, we have
u¸,j = u¸,jÕ and uÕ

¸,j
= uÕ

¸,jÕ , then we have delay(v1,j . . . vm,j , v1,jÕ . . . vm,jÕ) ”=
delay(v1,j . . . vm,jvÕ

m,j
, v1,jÕ . . . vm,jÕvÕ

m,jÕ)

Class of multi-sequential transducers

A transducer is said to be multi-sequential if there exists k such that its function can
be defined by a disjoint union of k sequential transducers. As shown in [CS86, JF18] a
transducer is multi-sequential i� it does not satisfy the pattern of Figure 6.6, called the
fork property. This pattern is expressed by the PLtrans formula:

÷fi0,1 : q0 ≠æ q1, ÷fi1,1 : q1
u1|v1
≠≠≠æ q1, ÷fiÕ

1,1 : q1
u2|v2
≠≠≠æ q1

÷fi2,3 : q2 ≠æ q3, ÷fi1,2 : q1
u1|vÕ

1
≠≠≠æ q2, ÷fi2,2 : q2

u2|vÕ
2

≠≠≠æ q2

fi
I

init(q0) · final(q3)
Sdel”=(v1, vÕ

1, v2, vÕ
2)

q0

q1 q2

q3
u1 v1

u2 v2
u1 vÕ

1
u2 vÕ

2

Figure 6.6: Pattern of the fork property
where Sdel”=(v1, vÕ

1, v2, vÕ
2) holds

s0

s1 s2

s3

u v1
u v2

u v3

Figure 6.7: Pattern of the dumbbell com-
putation where s1 ”= s2 and v1v2 ”= v2v3

Class of k-valued transducers

An automaton is said to be k-valued if it admits at most k distinct output values
for all input word, see [GI83, SdS10]. We have already shown in the Introduction that
non-functionality is expressible in PLtrans. This can be generalized to non-k-valuedness
as follows:

÷fi1 : p1
u|v1
≠≠≠æ q1

...
÷fik+1 : pk+1

u|vk+1
≠≠≠≠æ qk+1

A
k+1fi

i=1
init(pi) · final(qi)

B
·

Q

a
fi

1Æi<jÆk+1
vi ”= vj

R

b

Class of finite valued transducers

A transducer is said to be finite valued if there exists k such that any input word has
at most k distinct output words [Web90, Web93, SdS08]. As shown in [Web90, SdS08],
a transducer is finite valued i� it does not satisfy any of the following three patterns.



78

—

“

Chapter 6 – Specification languages for structural properties

• Figure 6.8 where v1 ”= v2, expressed in PLtrans by:

÷fi1
0 : q0 ≠≠≠æ q1, ÷fi1

1 : q1
u|v1
≠≠≠æ q1, ÷fi2

2 : q2
u|v2
≠≠≠æ q2

÷fi2
0 : q0 ≠≠≠æ q2, ÷fi3

1 : q1 ≠≠≠æ q3, ÷fi3
2 : q2 ≠≠≠æ q3

fi
Y
_]

_[

init(q0)
final(q3)
v1 ”= v2

• Figure 6.7 where s1 ”= s2 and v1v2 ”= v2v3, expressed in PLtrans by:

÷fi1
0 : s0 ≠≠≠æ s1, ÷fi2

1 : s1
u|v2
≠≠≠æ s2, ÷fi3

2 : s2 ≠≠≠æ s3

÷fi1
1 : s1

u|v1
≠≠≠æ s1, ÷fi2

2 : s2
u|v3
≠≠≠æ s2

fi

Y
___]

___[

init(s0)
final(s3)
s1 ”= s2
v1v2 ”= v2v3

• Figure 6.9 where |v1| ”= |v2|, expressed in PLtrans by:

÷fi1
0 : r0 ≠æ r1, ÷fi1

1 : r1
u1|v1
≠≠≠æ r2, ÷fi2

2 : r2
u2
≠≠≠æ r2, ÷fi2

2 : r2
u3
≠æ r1

÷fi2
4 : r4 ≠æ r6, ÷fi1

1 : r1
u1
≠≠≠æ r3, ÷fi1

3 : r3
u2|v2
≠≠≠æ r3, ÷fi2

3 : r3
u3
≠æ r4

÷fi2
4 : r4

u1
≠≠≠æ r5, ÷fi1

5 : r5
u2
≠≠≠æ r5, ÷fi1

5 : r5
u3
≠æ r4

fi
Y
_]

_[

init(r0)
final(r6)
|v1| ”= |v2|

q0

q1q2

q3

u v1u v2

Figure 6.8: Pattern called co-terminal
circuits where v1 ”= v2

r0

r1

r2 r3

r4

r5

r6

u1 v1

u2

u3

u1

u2 v2

u3

u1

u2

u3

Figure 6.9: Pattern called the W computation
where |v1| ”= |v2|

Corollary 6.3.5

Let k œ N be a constant. The membership problem of transducers to the classes
of k-sequential, multi-sequential, k-valued and finite-valued transducers is decid-
able in NLogSpace.

⌥

Proof The proof goes by a constant space reduction to the model-checking problem of
PLtrans. Then, the obtained formulas are constant (as long as k is fixed). So, NLogSpace
membership comes as a corollary of Theorem 6.3.1.

6.4 Pattern logic for sum-automata

We remind the reader that sum-automata are automata with outputs in the monoid
(Z, +, 0) and therefore define subsets of �ú

◊ Z. We consider in this section two logics
for expressing structural properties of sum-automata: the logic PLsum which is obtained
as PL[{Æ}] where the output predicate Æ is interpreted by the natural total order over
integers, and a subset of this logic PL

”=
sum obtained as PL

+[{”=}] where the predicate ”=
never appears in the scope of an odd number of negations (to avoid the expressibility of
the equality predicate). We show that the fragment PL

”=
sum has better complexity results.
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6.4.1 Syntax, semantics and model-checking problem of PLsum
and PL”=

sum

Definition ≠ Pattern logic for sum-automata

The logic PLsum is the set of formulas of the form

Õ ::= ÷fi1 : p1
u1|v1
≠≠≠æ q1, . . . , ÷fin : pn

un|vn
≠≠≠≠æ qn C

C ::= ¬C | C ‚ C | u ı uÕ
| u œ L | |u| Æ |uÕ

| | init(s) | final(s) | s = sÕ
| fi = fiÕ

|

t Æ tÕ

where for all 1 Æ i < j Æ n, fii ”= fij , L denote regular languages over � (assumed
to be represented as DFA), u, uÕ

œ {u1, . . . , un}, s, sÕ
œ {p1, . . . , pn, q1, . . . , qn},

t, tÕ
œ Terms({v1, . . . , vn}, ·, Á) and fi, fiÕ

œ {fi1, . . . , fin}.

The logic PL
”=
sum is defined as above but the constraint t Æ tÕ is replaced by t ”= tÕ and

this constraint does not occur under an odd number of negations, and moreover vi ”= vj

for all 1 Æ i < j Æ n (no implicit output equality tests).

Theorem 6.4.1

The model checking of sum-automata against formulas in PLsum is PSpace-C.
It is NP-C when the formula is fixed, and NLogSpace-C if in addition weights
of the automaton belong to {0, 1}.

Theorem 6.4.2

The model checking of sum-automata against formulas in PL
”=
sum is PSpace-C. It

is NLogSpace-C when the formula is fixed (even if the values of the automaton
are encoded in binary).

Theorems 6.4.1 and 6.4.2 are proved in Section 7.4.

6.4.2 Example of sum-automata subclasses

We review here some of the main sum-automata subclasses of the literature that are
decidable in PTime. The classes of k-valued, studied for instance in [FGR14, FGR15],
can be expressed in PL

”=
sum similarly as for transducers. For k-sequentiality we can observe

that we have delay(v1, v2) ”= delay(v1vÕ
1, v2vÕ

2) i� vÕ
1 ”= vÕ

2, thanks to commutativity of
sum.
Corollary

Let k œ N be a constant. The membership problem of sum-automata to the
classes of k-sequential and k-valued sum-automata is decidable in NLogSpace.

⌥

Proof The proof goes by a constant space reduction to the model-checking problem of
PL

”=
sum. Then, the obtained formulas are constant (as long as k is fixed). So, NLogSpace

membership comes as a corollary of Theorem 6.4.2.

6.5 Extensions

The logics we have presented can be extended in two ways by keeping the NLogSpace
complexity results, for all the output monoids we have considered. The first extension
allows to use arbitrary states predicate (where evaluation can be done in NLogSpace).
This is useful for instance to express properties with equivalence relation on states. The
second extension is adding universal state quantifiers before the formula. This does not
change the complexity, and allows for instance to express properties such as whether an
automaton is trim[III].

[III]
An automaton is trim if all states are accessible from an initial state and can reach some finial state.
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6.5.1 Arbitrary predicate on states

The PL logic have only three predicates for states (equality, initial and accepting).
However, the model-checking algorithms can be modified to carry over to arbitrary predi-
cates on states as follows. In Lemma 7.2.1, the case of the state predicate P (fid1

i1
, . . . , fidk

ik
)

will be handled by the automaton of Figure 6.10. Note that its size is polynomial in n.
Hence, as long as the evaluation of the predicates is computable, we obtain decidability.
In order to keep the tight complexities, our non-deterministic algorithms start by guess-
ing all starting and ending states which satisfy state predicates. So, the number of calls
to the NLogSpace evaluation function is linear in the size of the formula.

q̨

q̨ = (qÙ
1 , . . . , qÙ

n
)

�n

{(qÛ
1 , . . . , qÛ

n
) : P (qd1

i1
, . . . , qdk

ik
)}

’q̨ œ Qn

Figure 6.10: Extension of Lemma 7.2.1 in the case of an arbitrary state predicate
P (fid1

i1
, . . . , fidk

ik
)

We denote by PLnfa[Q] (resp. PLtrans[Q], PLsum[Q], PL
”=
sum[Q]) the class of PLnfa

formulas (resp. PLtrans, PLsum, PL
”=
sum) extended with predicate on states over Q.

Theorem 6.5.1

Let Q be a set of state predicates whose evaluation can be done in NLogSpace.
We have the following results:

• The model-checking problem of finite automata against formulas in
PLnfa[Q] is PSpace-C and NLogSpace-C when the formula is fixed.

• The model-checking problem of transducers against formulas in PLtrans[Q]
is PSpace-C and NLogSpace-C when the formula is fixed.

• The model-checking problem of sum-automata against formulas in
PLsum[Q] is PSpace-C, NP-C when the formula is fixed and NLogSpace-
C if additionally the values of the automaton belongs to {0, 1}.

• The model-checking problem of sum-automata against formulas in
PL

”=
sum[Q] is PSpace-C NLogSpace when the formula is fixed.

Example

We can use coloration of states in order to define a disjoint union of automata.
Assume we want to check, given two sum-automata S1, S2, whether there exists
an input word u such that S1(u) fl S2(u) ”= ?. This property holds i� the disjoint
union S1 ‡ S2 (where states of Si are colored by ci) satisfy the formula:

÷fi1 : p1
u|v
≠≠æ q1, ÷fi2 : p2

u|v
≠≠æ q2,

2fi

i=1
init(pi) · final(qi) · ci(pi)

6.5.2 Universal quantification over states

The logic PL is purely existential. However simple properties such as whether all
states of an automaton are reachable from an initial state are not directly expressible in
PL. We define therefore the extension denoted ’

úQPL[O] to be all formulas of the form
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’q1 . . . ’qm Ï where Ï œ PL[O]. In ’
úQPL[O], the previous property is expressible by

’q÷fi : q0
u|v
≠≠æ q init(q0)

The complexity of model-checking does not change (for all the particular instances
of the logic we have considered: finite automata, transducers and sum-automata) if we
allow for universal state quantification. Indeed, if the formula is not fixed, it su�ces
to iterate over all m-tuples of states and call a PSpace algorithm over the automaton
where these states have been marked (thanks to some coloring, as seen previously), this
remains PSpace.

If the formula is fixed, then there is only a polynomial number of m-tuples of states
and each of them are representable in logarithmic space. The procedure iterate over
all tuples of states and run the corresponding model-checking presented in the previous
section. This iteration can be done in logarithmic space, since each tuple representation
and computing the successor of a tuple takes a logarithmic space. So, we easily get
respectively LogSpaceNLogSpace and LogSpaceNP depending on the selected model-
checking sub-procedure. However our algorithm uses the answer of the oracle only to
choose between halting or continuing the iteration which yields respectively NLogSpace
and NP memberships.

We get then the following Theorem where hardnesses directly come from the frag-
ments without universal state quantifications.

Theorem 6.5.2

• The model-checking problem of finite automata against formulas in
’

úQPLnfa is PSpace-C and NLogSpace-C when the formula is fixed.
• The model-checking problem of transducers against formulas in ’

úQPLtrans
is PSpace-C and NLogSpace-C when the formula is fixed.

• The model-checking problem of sum-automata against formulas in
’

úQPLsum is PSpace-C, NP-C when the formula is fixed and
NLogSpace-C if additionally the weights of the automaton belongs to
{0, 1}.

• The model-checking problem of sum-automata against formulas in
’

úQPL
”=
sum is PSpace-C and NLogSpace-C when the formula is fixed.



82



—

“

Chapter 7

Model-checking of structural

properties

In this chapter, we provide algorithms for answering the model-checking problem
for automata with outputs against a pattern formula expressed in PLnfa, PLtrans, PLsum
and PL

”=
sum and, we investigate their complexity. Our approach relies on the existence

of a model which takes as input a tuple of paths of the considered automaton with
outputs. Loosely speaking, we show how the satisfiability of atomic predicates can be
decided using decidability results of the model on tuples and then, we provide a decision
procedure based on closure properties of this model. Our model-checking algorithms rely
on regular automata for PLnfa and rely on Parikh automata, defined in Section 2.2, for
PLtrans, PLsum and PL

”=
sum.

7.1 An intermediate logic

In the pattern logic, we have four types of variables (paths, states, inputs and out-
puts). While this is appealing for succinctness and readability reasons, it is less easy
to deal with for model-checking. Therefore, we introduce an intermediate logic, called
path pattern logic, in which there is a single type of variables: the path variables. We
then show its equivalence with the pattern logic, in the sense that satisfiability by any
automaton with output is preserved.

Definition

Let X a countable set of path variables and O a set of output predicates. A path
formula Õ over O is a term generated by the following grammar:

Formula Õ ::= Õ · Õ | Õ ‚ Õ | ¬Õ |

Input predicates fi1 ıI fi2 | fi œI L | fi1 Æ
len
I

fi2 |

State predicates init(fid) | final(fid) | fid1
1 =Q fid2

2 |

Path predicates fi1 =P fi2

Output predicates p(t1, . . . , t–(p))

where fi, fi1, fi2 œ X, d, d1, d2 œ {Ù, Û} t1, . . . , tn œ Terms(X, ü, 0), p œ O of arity
–(p) and L ranges over regular languages over �. We denote by PLpaths[O] the set
of path formulas over O, and by PL

+
paths[O] its fragment where output predicates

does not occur under an odd number of negations.

We introduce usual syntactic sugar, for the input equality fi =I fiÕ def= fi ıI fiÕ
·fiÕ

ıI fi,
for the input size comparisons fi =len

I
fiÕ def= fi Æ

len
I

fiÕ
·fiÕ

Æ
len
I

fi and fi <len
I

fiÕ def= ¬(fiÕ
Æ

len
I

fi).
Informally, path formulas only speak about the paths of an automaton with output,

the input constraints speak about properties of their inputs, the state constraints about
properties of their starting and ending states, and O about properties of their outputs.
For a given automaton with outputs A = (Q, QI , QF , �, ⁄) over the monoid (D, ü, 0),
we refer by Paths(A) the words belonging to Q(�DQ)ú that correspond to a path of A.
The semantics of such a formula is then, on an automaton with output A, valuations of
path variables into Paths(A).

Formally, we first fix some monoid M = (DM, üM, 0M) together with an interpre-
tation pM of each output predicate p œ O of arity –(p), such that pM

œ DM if p is
a constant i.e. –(p) = 0 and pM

™ D–(p)
M otherwise. Let A be an automaton with
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output over M. Given a valuation ‹ : X æ Paths(A), the interpretation t‹,M
œ DM

of a term t œ Terms(X, ü, 0) is inductively defined by (t1 ü t2)‹,M = t‹,M
1 ü t‹,M

2 ,
0‹,M = 0M and fi‹,M = out(‹(fi)) œ DM. Then a formula Õ œ PLpaths[O] is interpreted
in A = (Q, QI , QF , �, ⁄) as a set of valuations denoted [[Õ]]A ™ Paths(A)X defined as
follows.

[[init(fid)]]A = {‹ : ‹(fi)d
œ QI}

[[fid1
1 =Q fid2

2 ]]A = {‹ : ‹(fi1)d1 = ‹(fi2)d2}

[[final(fid)]]A = {‹ : ‹(fi)d
œ QF }

[[¬Õ]]A = Paths(A)X
\ [[Õ]]A

[[Õ1 · Õ2]]A = [[Õ1]]A fl [[Õ2]]A
[[Õ1 ‚ Õ2]]A = [[Õ1]]A fi [[Õ2]]A
[[fi1 ıI fi2]]A = {‹ : in(‹(fi1)) ı in(‹(fi2))}

[[fi1 =P fi2]]A = {‹ : ‹(fi1) = ‹(fi2)}

[[fi1 Æ
len

I
fi2]]A = {‹ : |in(‹(fi1))| Æ |in(‹(fi2))|}

[[fi œI L]]A = {‹ : in(‹(fi)) œ L}

[[p(t1, . . . , t–(p))]]A = {‹ : (t‹,M
1 , . . . , t‹,M

–(p)) œ pM
}

A path formula Õ is said to be satisfiable over A, denoted A |= Õ hereafter, if [[Õ]]A ”= ?.
The path logic and the pattern logic are equivalent in the following precise sense.

Lemma 7.1.1

For all pattern formulas Õ œ PL[O], (resp. Õ œ PL
+[O]), one can construct in

linear time a path formula Œ œ PLpaths[O fi{=O}] (resp. Œ œ PL
+
paths[O fi{=O}])

such that the following hold:
1. VarP (Õ) = Var(Œ)
2. for all monoid M = (D, üM, 0M), all interpretation pM

œ D–(p) for each
p œ O, all automata with output A over M, we have A |= Õ i� A |= Œ

3. there is a surjective mapping from the valuations (in A) satisfying Œ to the
valuations satisfying Õ.

In addition, if Õ does not contain twice the same output variable in its prefix,
then Œ œ PLpaths[O].

Proof The proof is straightforward but technical. We include it here for the sake of
completeness. Assume that Õ is of the form:

÷fi1 : p1
u1|v1
≠≠≠æ q1, . . . , ÷fin : pn

un|vn
≠≠≠≠æ qn, C

In a first step, we rename the j-th occurrences, j > 1, of any state, input and output
variables so that eventually, all these variables are pairwise di�erent in the prefix. This
can be easily done in linear-time modulo adding some equality constraints to C. For
instance, if we have pi = pj , i < j, we use a fresh variable name p and replace pj by p in
the prefix ÷fi1 . . . ÷fin, and add the constraint p = pi to C. We do the same for the other
types of variables. Note that it is not necessary to do it for the path variables fii, since
by definition of pattern formulas, they are assumed to occur only once in the prefix.
We end up with a formula of the form

ÕÕ
© ÷fi1 : pÕ

1
u

Õ
1|vÕ

1
≠≠≠æ qÕ

1, . . . , ÷fin : pÕ
n

u
Õ
n|vÕ

n
≠≠≠≠æ qÕ

n
, C

Õ

where all the variables occur once in the prefix, together with a mapping f from the new
variables to the old ones. We also assume that f is the identify on the path variables. In
our previous example, we would have f(p) = pj for instance.
Then, ÕÕ and Õ are equivalent in the following sense: over an automaton with output, for
all valuations ‹ satisfying Õ, ‹ ¶ f satisfies ÕÕ. Conversely, for all valuations ‹Õ satisfying
ÕÕ, the valuation ‹Õ restricted to the variables of Õ satisfies Õ. Hence, it is possible to
recover the models of Õ from the models of ÕÕ, and conversely.
Now, note that in ÕÕ, there is a functional dependency between the state, input and out-
put variables, and the path variables. This dependency is formalized through three func-
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⌥

tions fQ, fI , fO from respectively, {pÕ
1, . . . , pÕ

n
, qÕ

1, . . . , qÕ
n
} to {fi1, . . . , fin}, {uÕ

1, . . . , uÕ
n
} to

{fi1, . . . , fin}, and from {vÕ
1, . . . , vÕ

n
} to {fi1, . . . , fin}.

Then, Œ is obtained by applying the following transformations on C:
• Any atom u ı uÕ is replaced by fI(u) ıI fI(uÕ). Any atom u œ L by fI(u) œI L.

Any atom |u| Æ |uÕ
| by fI(u) Æ

len
I

fI(uÕ).
• Any atom p(t1, . . . , tk) is replaced by p(tÕ

1, . . . , tÕ
k
) where tÕ

i
is obtained by substi-

tuting any variable v in ti by fO(v).
• Any atom init(q) is replaced by init(fQ(q)Ù) if there exists a binding ÷fi : q u | v

≠≠≠≠æ
qÕ

in ÕÕ otherwise init(q) is replaced by init(fQ(q)Û) and there exists a binding
÷fi : qÕ u | v

≠≠≠≠æ
q in ÕÕ. Any atom final(q) is replaced by final(fQ(q)Ù) if there exists a

binding ÷fi : q u | v
≠≠≠≠æ

qÕ in ÕÕ otherwise final(q) is replaced by final(fQ(q)Û) and there
exists a binding ÷fi : qÕ u | v

≠≠≠≠æ
q in ÕÕ.

• Finally, any atom fi = fiÕ is replaced by fi =P fiÕ.
Now, Õ and Œ are equivalent in the following sense. Any valuation ‹ satisfying Õ satisfies
Œ as well (if restricted to its path variables). Conversely for all valuations ‹Õ satisfying
Œ , we define the following valuation ‹:

‹(fi) = ‹Õ(fi) for all path variables fi

‹(u) = in(‹Õ(fI(u))) for all input variables u

‹(v) = out(‹Õ(fO(v))) for all output variables v

‹(q) = (‹Õ(fQ(q)))Ù for all state variables q such that there
exists a binding ÷fi : q u | v

≠≠≠≠æ
qÕ in Õ

‹(q) = (‹Õ(fQ(q)))Û otherwise

Then, ‹ satisfies Õ. Hence, it is possible to recover all the models of Õ from the models
of ‹.

The converse of the previous lemma, although not needed for the purpose of this
paper, holds as well. For all path formula one can build in linear time a pattern formula
which is satisfied over some automaton A i� the former is satisfied as well.
Example

Consider the following pattern formula:

÷fi1 : p
u|v
≠≠æ q, ÷fi2 : p

u
Õ|v

≠≠æ qÕ, v ü v ”= v · q ”= qÕ

It is first transformed into the pattern formula where implicit equalities are ex-
pressed by additional atoms:

÷fi1 : p
u|v
≠≠æ q, ÷fi2 : pÕ u

Õ|vÕ

≠≠≠æ qÕ, v ü v ”= v · q ”= qÕ
· p = pÕ

· v = vÕ

Which in turn is transformed into the path formula:

÷fi1, ÷fi2, v ü v ”= v · fiÛ

1 ”=Q fiÛ

2 · fiÙ

1 =Q fiÙ

2 · fi1 =O fi2 · fi1 ”=I fi2

7.2 Model-checking of PLnfa: Proof of Theorem 6.2.1

Intuitively, we reduce the model-checking of an NFA A to the emptiness problem of
another NFA M , which takes as input a tuple of paths of A corresponding to the exis-
tentially quantified paths in the considered pattern formula, modulo a suitable encoding
of path tuples as words.

We present the following encoding of tuple of words that fit within to the definition
of automata with outputs. Let � be some alphabet and ù a fresh symbol, fi œ �ú and
m Ø |fi|. The padding of fi with respect to m is the word fiù

m≠|fi| . Let fi1, fi2 œ �ú and
m = max(|fi1|, |fi2|). For j œ {1, 2}, let fiÕ

j
the padding of fij with respect to m. Note

that |fiÕ
1| = |fiÕ

2| = m. The convolution fi1 ¢ fi2 is the word of length m defined for all
1 Æ i Æ m by (fi1 ¢ fi2)[i] = (fiÕ

1[i], fiÕ
2[i]). E.g. q0a1d1q1 ¢ p0 = (q0, p0)(a1, ù)(d1, ù)(q1, ù).

The convolution can be naturally extended to n-tuple of words as follows:
o

n

i=1 fii =
fi1 ¢ (fi2 ¢ . . . ¢ fin).
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We are now able to define, from an automaton with outputs A = (Q, QI , QF , �, ⁄),
the NFA Pathsn(A) which accepts an n-tuple of paths of A as follows. Let D be the
output values occurring on the transitions of A and � = � fi Q fi D fi {ù}. The NFA

Pathsn(A) consists in an n-time product of A, augmented with intermediate states and
transitions to read the states of Q and the values in D (seen as letters). Note that, this
NFA has an alphabet exponential in n.

The following lemma states that all path, state and input predicates are regular sets
of path tuples. It holds for any automata with outputs so we state it in this more general
context, i.e. not just for finite automata.

Lemma 7.2.1

Consider X = {fi1, . . . , fin} be a finite set of path variables, arbitrarily ordered.
Let A be an automaton with outputs and Õ be an atomic path formula over X
built with a unique predicate of {ıI , œIL, Æ

len

I
, init(.d), final(.d), .d1 =Q .d2 , =P }

where d, d1, d2 œ {Ù, Û} and L ranges over regular languages represented by DFA.
One can construct an NFA M with a number of states polynomial in |M | + |Õ|

and such that:

Pathsn(A) fl L(MÕ) = {(‹(fi1), . . . , ‹(fin)) : ‹ : X æ Paths(A) · ‹ œ [[Õ]]A}

Pathsn(A) fl L(M¬Õ) = {(‹(fi1), . . . , ‹(fin)) : ‹ : X æ Paths(A) · ‹ /œ [[Õ]]A}

Proof Let A = (Q, QI , QF , �, ⁄) be an automaton with output. We denote by D the
finite set of output values occurring on A. In this proof we provide the construction of
an NFA MÕ over the alphabet � = � fi Q fi D fi {ù} considering the di�erent cases for Õ:

• fii ıI fij . In order to check the equality of the input of the paths fii and fij , we can
ignore states and outputs, so we only consider input letter (belonging to �). Here
MÕ is defined as a single-state automaton (with card(�)n transitions).

(MfiiıI fij )
{(a1, . . . , an) œ �n : ai œ � =∆ ai = aj}

• fii œI L. We construct an automaton accepting the set of words u œ �n such that
f(u) œ L, where f is the morphism defined by f(a1, . . . , an) = Á if ai /œ �, and
f(a1, . . . , an) = ai otherwise, for all (a1, . . . , an) œ �n. In other words, MÕ recog-
nizes the language f≠1(L). Since regular languages are closed under inverse mor-
phism, we get the existence of MÕ. We can construct MÕ from any DFA B recogniz-
ing L by replacing any transition (q, ‡, qÕ) of B by the transitions (q, (a1, . . . , an), qÕ)
for all a1, . . . , an œ � such that ai = ‡, and by adding intermediate states and tran-
sitions to B reading letters whose ith component is not in �. This is doable by an
automaton with a polynomial number of state in |B|.

• fii Æ
len
I

fij . By the definition of convolution, it su�ces to check that whenever the
jth component of the read letter is ù, then so is its ith component. This is done
by the single-state automaton

(MfiiÆlen
I fij

) {(a1, . . . , an) œ �n : aj = ù =∆ ai = ù}

• Case fii =P fij . It su�ces to check that the ith and jth components are the same:

(Mfii=fij )
{(a1, . . . , an) œ �n : ai = aj}

• init(fiÙ

i
) and final(fiÙ

i
). The NFA MÕ are respectively:

(Minit(fiÙ
i ))

{(q1, . . . , qn) œ Qn : qi œ QI}

�n
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(Mfinal(fiÙ
i ))

{(q1, . . . , qn) œ Qn : qi œ QF }

�n

• init(fiÛ

i
) and final(fiÛ

i
). The NFA MÕ are respectively:

(Minit(fiÛ
i ))

�n

{(q1, . . . , qn) œ Qn : qi œ QI}

{(a1, . . . , an) œ �n : ai = ù}

(Mfinal(fiÛ
i ))

�n

{(q1, . . . , qn) œ Qn : qi œ QF }

{(a1, . . . , an) œ �n : ai = ù}

• fid1
i

=Q fid2
j

with d1, d2 œ {Ù, Û}. The constructions are similar as before. For in-
stance, take the constraint fiÙ

i
=Q fiÛ

j
. Then, the automaton MÕ needs to remember

(in its control state) the first state of A read on the ith component and checks later
on that it is equal to the last state read on the jth component. This is doable by
an automaton with a polynomial number of state in |A|.

For negations, we construct M¬Õ from the automata presented before as follows: Except
for the predicate œIL, all cases have a constant number of states and therefore can be
complemented in polynomial time. So, to treat the predicate ¬(fiiœIL), we first rewrite
it into fii œI L, which causes an exponential blow-up in Õ since L is represented by a
DFA.

Lemma 7.2.2 ≠ easiness of Theorem 6.2.1

The model-checking problem of NFA against PLnfa formulas is in PSpace. It is
in NLogSpace when the formula is fixed.

⌥

Proof Let Œ be a PLnfa formula and A be an NFA. This proof presents an algorithm
which decides A |= Œ in NPSpace, becoming NLogSpace when the formula is fixed.
To do so, we reduce the model-checking problem to the emptiness of a product of NFA.
First, we consider some transformations of the pattern formula. Note that, those trans-
formation can be done at constant cost in the case where the formula Œ is fixed. From Œ ,
we can construct in polynomial time an equivalent path formula thanks to Lemma 7.1.1.
The obtained path formula is then put in negation normal form[IV]. Finally all disjunction
are non-deterministically resolved by picking which side the model will verify. Eventu-
ally, we end up with a path formula Õ of the form

w
k

i=1 ¸i where each ¸i are literals[V].
Let X = {fi1, . . . , fin} be the path variables of Õ. For all literals ¸i, one can construct
in polynomial time an NFA from A, X by Lemma 7.2.1 and then define M an NFA such
that:

L(M) = Pathsn(A) fl
u

k

i=1L(M¸i)

=
u

k

i=1{(‹(fi1), . . . , ‹(fin)) : ‹ : X æ Paths(A) · ‹ œ [[¸i]]A}

= {(‹(fi1), . . . , ‹(fin)) : ‹ : X æ Paths(A) ·
w

k

i=1‹ œ [[¸i]]A}

= {(‹(fi1), . . . , ‹(fin)) : ‹ : X æ Paths(A) · ‹ œ [[Õ]]A}

Due to the equivalence between Õ and Œ we have L(M) ”= ? i� A |= Œ . Remark that
the number of states of M is exponential in the size of the input (in particular in |Õ|)
and then cannot be explicitly computed in polynomial space. When the formula is fixed,
|M | becomes polynomial in the size of the input (in particular in |A|). The classical
technique, consisting in searching a small non-emptiness witness non-deterministically
on-the-fly and to perform transitions on-demand, allows us to decide the emptiness of
L(M) in NPSpace and, NLogSpace when the formula is fixed.
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Lemma 7.2.3 ≠ hardness of Theorem 6.2.1

The model-checking problem of NFA against formulas in PLnfa is hard for
PSpace. It is hard for NLogSpace when the formula is fixed.

⌥

Proof Let A1, . . . , Ak be k DFA. The proof goes by reduction from the problem of
deciding

u
k

i=1 L(Ai) ”= ?, which is known to be PSpace-C thanks to [Koz77] and
NLogSpace-C if k is fixed. So, we construct A an NFA as the disjoint union of each Ai,
i.e. A = A1 ‡ · · · ‡ An. Then we define Õ œ PLnfa as follows.

÷fi1 : q1
u
≠æ qÕ

1, . . . , ÷fik : qk

u
≠æ qÕ

k

Q

a
fi

1Æi<jÆk

qi ”= qj

R

b ·

Q

a
fi

1ÆiÆk

init(qi) · final(qÕ
i
)

R

b

The left-hand side part of Õ asks for k accepting runs on the same input and the right-
hand side part of Õ constraints these paths to start in distinct states. By the disjointness
of the construction an accepting run in A is an accepting run of some Ai. In addition,
there are exactly k initial states, one of each Ai since the automata are deterministic.
Thus A |= Õ if and only if

u
n

i=1 L(Ai) ”= ?.

7.3 Model-checking of PLtrans: Proof of Theorem 6.3.1

We have seen that input, state and path predicates can be encoded as NFA in
Lemma 7.2.1 modulo encoding of path tuples as words, through convolutions. It is
however not possible for output predicates of the logic PLtrans. For instance, the atom
|v| = |vÕ

| for v, vÕ two outputs word variables, has not necessarily a regular model. In-
deed, consider a transducer T with one state q and two self loops q a | Á

≠≠≠≠æ
q and q b | b

≠≠≠≠æ
q.

The language {u ¢ uÕ : |[[T ]](u)| = |[[T ]](uÕ)|} = {u ¢ uÕ : |u|b = |uÕ
|b} is not regular. In

this section, we rely on Parikh automata defined in Section 2.2.

7.3.1 Proof of Theorem 6.3.1

The following lemma shows how to encode output predicates as a products of NPA.

Lemma 7.3.1

Consider X = {fi1, . . . , fin} be a finite set of path variables, arbitrarily ordered.
Let T be a transducer and Õ be an atomic path formula over X of the form
t1 ”ı t2 or t œ N or t /œ N or |t1| Æ |t2| or |t1| < |t2| where N ranges over
regular languages represented by DFA and t, t1, t2 œ Terms(X, ·, Á). One can
construct a NPA MÕ with a number of states polynomial in |T | and exponential
in |Õ|. Furthermore, its set of weight vectors and its acceptance constraint have
a constant size. Finally, the NPA MÕ satisfies

Pathsn(T ) fl L(MÕ) = {(‹(fi1), . . . , ‹(fin)) : ‹ : X æ Paths(T ) · ‹ œ [[Õ]]T }

Proof Let T = (Q, QI , QF , �, ⁄) be an automaton with outputs in the free monoid.
We denote its finite set of output values by D µ �ú and we denote by µ the length of
the longest output word appearing on transitions of T i.e. µ = max{|⁄(”)| : ” œ �}. In
this proof we provide the construction of MÕ over the alphabet � = � fi Q fi D fi {‹}

considering the di�erent predicates case by case:
• |t1| ∞ |t2| where ∞ œ {Æ, <}. We fix ti = fiÕ

i,1 . . . fiÕ
i,mi

with i œ {1, 2} and fiÕ
i,j

œ X.
The predicate |t1| ∞ |t2| is true if and only if

q
m1
j=1 |out(fiÕ

1,j
)| ∞

q
m2
j=1 |out(fiÕ

2,j
)|.

We describe the construction of the NPA MÕ which takes fi1¢. . .¢fin as input word.
Intuitively, MÕ uses the two counters c1, c2 to compute for all i œ {1, 2}, the value
ci =

q
n

j=1 |out(fij)| ◊ ki,j where ki,j Æ mi is the number of occurrences of fij in ti.
For acceptance our NPA tests whether c1 ∞ c2 using an atomic Presburger formula.
When MÕ reads a symbol which is not an n-tuple of outputs, the counter values

[IV]
The negation normal form of a formula is obtained by applying the two rewriting rules ¬(Õ1 ·Õ2) ◆

(¬Õ1) ‚ (¬Õ2) and ¬(Õ1 ‚ Õ2) ◆ (¬Õ1) · (¬Õ2) until reaching a fixed point
[V]

A literal is either an atomic formula or the negation of an atomic formula
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vh1 [1]

vh1 [µ]

�n
\ Dn

(v1, . . . , vn) œ Dn

(v1,
. . .

, vn
) œ

D
n

(v1 , . . . , v
n ) œ D n

(q1 , . . . , q
n ) œ Q n

(q1,
. . .

, qn
) œ

Q
n

�n
\ Dn

(v1, . . . , vn) œ Dn

store a letter of � from

index {0, 1, . . . , µ} of vh1

ignore non-data

count size of fi
Õ
1,1, . . . , fi

Õ
1,h1≠1

and beginning of fi
Õ
1,h1

ignore non-data

count size of fi
Õ
1,1, . . . , fi

Õ
1,h1≠1

but not fi
Õ
1,h1 anymore

Figure 7.1: Gadget handling on counter for the construction of the NPA MÕ

do not change. When it reads (v1, . . . , vn) œ Dn, it uses exactly n ◊ max{m1, m2}

transitions to update the two counters c1, c2 in order to keep ci =
q

n

j=1 |vj | ◊ ki,j .
Note that, such amount of transitions for updating counters permits to treat each
path of the input tuple separately and thus can be realized by using weight vectors
belonging to {≠µ, . . . , ≠1, 0, 1, . . . , µ}

2. Finally, the NPA MÕ can be constructed
with a number of states and number of distinct weight vectors polynomial in both
|T | and |Õ|.

• t b N where b œ {œ, /œ} and the language N is denoted by the DFA B =
(QB , IB , FB , �B) over the alphabet �. We fix t = fiÕ

1 . . . fiÕ
m

with fiÕ
j

œ X. The pred-
icate t œ N holds i� there exists an (m + 1)-tuple of states (q1, . . . , qm+1) œ QB

such that for all 1 Æ j Æ m, there exists a path from qj to qj+1 in B over the
word out(fiÕ

j
) and where q1 is initial and qm+1 is final. We describe the construc-

tion of the NPA MÕ which takes fi1 ¢ . . . ¢ fin as input word. More precisely
MÕ =

v
q̨œQ

m≠1
B

Mq̨ where Mq̨ is described as follows. Let q̨ = (q2, . . . , qm), the
NFA Mq̨ is defined with Qm

B
as set of states, (q1, . . . , qm) œ Qm

B
where q1 œ IB as

initial state, (q2, . . . , qm+1) œ qm

B
where qm+1 œ FB as final state. When Mq̨ read a

symbol which is not an n-tuple of input letters, the current state does not change.
When it reads (a1, . . . , an) œ �n, the transition (p1, . . . , pm) æ (pÕ

1, . . . , pÕ
m

) can be
triggered if (pj , ai, pÕ

j
) for all 1 Æ j Æ m, 1 Æ i Æ n and fiÕ

j
= fii. Note that t ”œ N

can be denoted by t œ N and the size of the disjunct union remains exponential
in |Õ|. Finally, the NPA (here an NFA) MÕ can be constructed with a number of
states exponential in |Õ| and constant in |T |.

• t1 ”ı t2. We fix ti = fiÕ
i,1 . . . fiÕ

i,mi
with i œ {1, 2} and fiÕ

i,j
œ X. Remark, if |t1| ”Æ |t2|

then t1 ”ı t2 holds trivially. Thus, we assume w.l.o.g. that |t1| Æ |t2| (it has been
already shown how to construct a NPA which checks this predicate as well as its
negation). Under this hypothesis, it remains to construct a NPA which checks for
existence of a mismatching position h in t1 and t2, i.e. such that the hth letter of the
two outputs di�er. We describe the construction of MÕ which reads fi1 ¢ . . . ¢ fin

as input word. The position h may not occur at the same position in the input
read by MÕ, and that is why we need to use counters to identify a position h1 in
the output defined by t1, and a position h2 in the output defined by t2, remember
the corresponding output labels (using states), and later check that the memorized
output letters di�er, and that h1 = h2 (using an atomic Presburger formula). The
way the positions h1, h2 are chosen by MÕ works as follows: it guesses an index
j1 œ {1, . . . , m1} and an index j2 œ {1, . . . , m2}, intended to verify the existence of
a mismatch position in the output of fiÕ

1,j1 and fiÕ
2,j2 . The counters will respectively

count the length of the output produced on fiÕ
1,1 . . . fiÕ

1,j1≠1 and fiÕ
2,1 . . . fiÕ

2,j2≠1 (when
processing the whole tuple of paths), and also the length of the output produced
in respectively fiÕ

1,j1 and fiÕ
2,j2 up to some point non-deterministically chosen. Fig-

ure 7.1 intuitively shows how one of the two counters is handled. Overall it yields
a NPA MÕ which checks t1 ”ı t2 with a number of states and number of distinct
weights polynomial in both |T | and |Õ|. ⌥
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Lemma 7.3.2 ≠ easiness of Theorem 6.3.1

The model checking of transducers against PLtrans formulas is in PSpace. It is
in NLogSpace when the formula is fixed.

⌥

Proof Let Œ be a PLtrans formula and A be a transducer. The beginning is the same as it
was for NFA. After a series of transformations of Œ (negation normal form, transformation
into path formula, disjunction removing), we end up with the PL

+
paths[{”ı, œ N, /œ N, Æ

, <}] path formula Õ of the form
w

k

i=1 ¸i ·
w

k
Õ

j=1 pj where each ¸i are either state, input
and path literals and all pj are output atoms[VI]. Now, for all ¸i we construct an NFA

(which is a particular case of NPA) applying Lemma 7.2.1 and for all pj we construct a
NPA applying Lemma 7.3.1. Then we define M as the NPA such that:

L(M) = Pathsn(A) fl
u

k

i=1L(M¸i) fl
u

k
Õ

j=1L(Mpj )

The acceptance constraint of M consists in a conjunction of atomic Presburger formulas
(in particular this conjunction has a polynomial size in |Õ|). Again, we have L(M) ”= ?
i� A |= Œ and the emptiness of M can be decided in PSpace by applying Lemma 2.2.3.
When the pattern formula is fixed, the acceptance constraint and the set of weight vectors
of M becomes fixed as well. In that case we apply Theorem 2.2.1. to get the NLogSpace
membership.

7.4 Model-checking of PLsum and PL”=
sum

: Proof of The-

orems 6.4.1 and 6.4.2

The proof of the results below for PLsum follows arguments that are similar to those
developed for transducers in the proof of Theorem 6.3.1 (and then also for NFA in the
proof of Theorem 6.2.1). However, the NLogSpace-C result for PL

”=
sum requires to rely

on the weak Parikh automata defines in Section 2.2.

7.4.1 Proof of Theorems 6.4.1 and 6.4.2

Lemma 7.4.1

Consider X = {fi1, . . . , fin} be a finite set of path variables, arbitrarily ordered.
Let A be a sum-automaton and Õ be an atomic path formula over X of the form
t1 ”= t2 or t1 Æ t2 or t1 < t2 where t, t1, t2 œ Terms(X, +, 0). One can construct
a NPA MÕ with a number of states and a number of distinct weight vectors
polynomial in both |A| and |Õ|, an atomic acceptance constraint and such that:

Pathsn(A) fl L(MÕ) = {(‹(fi1), . . . , ‹(fin)) : ‹ : X æ Paths(A) · ‹ œ [[Õ]]A}

In addition, the NPA MÕ is weak when Õ is t1 ”= t2.

⌥

Proof The construction is the same as the case of length comparison for transducers.
We fix ti = fiÕ

i,1 . . . fiÕ
i,mi

with i œ {1, 2}. By definition t1 ∞ t2 with ∞ œ {”=, <, Æ} holds if
and only if

q
m1
j=1 out(fiÕ

1,j
) ∞

q
m2
j=1 out(fiÕ

2,j
). Intuitively MÕ computes for all i œ {1, 2}

the value ci = out(fij)◊ki,j where ki,j Æ mi is the number of occurrences of fij in ti. For
updating counters, the NPA treats each path of the input tuple separately and then can
uses weight vectors belonging to ({0} fi D)2. For acceptance the NPA MÕ tests whetherq

n

j=1 c1,j ∞
q

n

j=1 c2,j using an atomic Presburger formula.

Lemma 7.4.2 ≠ easiness of Theorem 6.4.1

The model checking of sum-automata against PLsum formulas is in PSpace. It
is in NP when the formula is fixed, and NLogSpace if in addition weights of
the automaton belong to {0, 1}.

[VI]
The path formula Õ cannot have output literals since Œ belongs to the fragment where output

predicates does not occur under an odd number of negations.
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⌥

Proof Let Â be a PLsum formula and A be a sum-automaton. The proof is similar to the
model-checking for transducers against PLtrans. Again, we consider some transformations
of Â which provides the path formula Õ of the form

w
k

i=1 ¸i ·
w

k
Õ

j=1 ¸Õ
j

where each ¸i is
either state, input or path literals and all ¸Õ

j
are output literals. For all ¸i we construct an

NFA (which is a particular case of NPA) applying Lemma 7.2.1 and for all ¸Õ
j

we construct
a NPA applying Lemma 7.4.1. Then we define M as the NPA such that:

L(M) = Pathsn(A) fl
u

k

i=1L(M¸i) fl
u

k
Õ

j=1L(M¸Õ)

The acceptance constraint of M consists in a conjunction of atomic Presburger for-
mulas (in particular this conjunction has a polynomial size in |Õ|). The PSpace and
NLogSpace results come by applying Lemma 2.2.3 as for the proof of model-checking
for transducers against PLtrans. To get the NP upper bound, we e�ectively construct in
polynomial time M . In fact, when values n, k, kÕ are fixed then M have a polynomial
number of states. As shown in [FL15] the non-emptiness problem for NPA is in NP.

Lemma 7.4.3 ≠ easiness of Theorem 6.4.2

The model checking of sum-automata against PL
”=
sum formulas is in PSpace. It

is NLogSpace when the formula is fixed (even if the values of the automaton
are encoded in binary).

⌥
Proof The proof is the same as for PLsum model-checking, except each call to
Lemma 2.2.3 are replaced by Theorem 2.2.6.

Lemma 7.4.4 ≠ hardness of Theorem 6.4.1

The model checking of sum-automata against fixed PLsum formulas is hard for
NP.

⌥

Proof The proof goes by reduction from the Set 2-Partition problem [Pap94], which
asks, given a multi-set S = x1, . . . , xk of natural numbers, whether there exists I such
that

q
iœI

xi =
q

iœS\I
xi. Such set I exists if the sum-automaton of Figure 7.2 satisfies

the following PLsum formula:

÷fi : qI

v
≠æ qF , ÷fi0 : qF

v0
≠æ qF init(qI) · final(qF ) · v = v0

The reduction is linear because the automata construction is linear and the formula is
constant.

x1

≠x1

xk

≠xk

0

Figure 7.2: Sum-automaton used for encoding Set Partition

7.5 Summary and future works

We introduced several logics to reason about structural properties of regular au-
tomata, transducers and sum-automata.

Summary

The complexity to decide whether an automaton with outputs in a monoid fulfills
the specification given by a pattern formula, either constant or part of the input, have
been published in [FMR18, FMR19]. We focus on how the three instances allow to
easily recover known complexity results for deciding automata subclasses, as well as new
results, such as for instance the NLogSpace upper bound of the k-valuedness problem
for sum-automata (with a fixed k and weights in binary). The following table summarizes
the complexity results of the model-checking problem (for sum-automata, the weights are
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assumed to be encoded in binary):

PLnfa PLtrans PLsum PL
”=
sum

fixed PSpace-C PSpace-C PSpace-C PSpace-C
unfixed NLogSpace-C NLogSpace-C NP-C NLogSpace-C

Future works

In [FMR18], we give su�cient conditions, on the output monoid, under which the
problem of model-checking an automaton with outputs against a formula in the generic
logic is decidable. Briefly, these conditions require the existence of a machine model
accepting tuples of runs which satisfy the atomic predicates of the logic, is closed under
union and intersection, and has decidable emptiness problem.

Other output monoids appear frequently in the literature and may share common
techniques, for instance, discounted sum can be encoded as some operation of a monoid
as proved in [FGR15]. There are many possible extensions that ought to be considered,
such as tree automata with Presburger constraints [Won10], two-way automata with
Presburger constraints [FGM19] and two-way visibly pushdown transducers and Parikh
automata [DFRT16, DFT19]. For instance, there is a rich literature on tree transducers
and two-way transducers where deciding structural patterns is an important problem,
that would deserve to have a dedicated logic and model-checking algorithm. Based on
examples of structural patterns from the literature, our objective is to design a logical
syntax in which those patterns could be naturally expressed.



Conclusion

This thesis lies in the general realm of formal methods and more precisely in quanti-
tative extensions of verification and synthesis methods for reactive systems. The model-
checking is, nowadays, a standardized approach to assure the design of reactive systems
that are dependable, safe, and e�cient. Its classical (Boolean) setting is well known and
elegantly supported by regular automata-theoretic methods. However, the correct/incor-
rect abstraction level is coarse and some applications require to capture situations beyond
regularity. Quantitative extensions of model-checking have been developed, although the
landscape of this framework is not fully understood, and challenging questions remain
open.

deterministic WA
max
sum

(© deterministic sum-automaton)
÷, ’ PTime

unambiguous WA
max
sum

(© Regular combinators [AFR14])
÷, ’ PTime

finite valued WA
max
sum

(© finitely ambiguous WA
max
sum [FGR14])

÷ PTime, ’ Decidable

linearly ambiguous WA
max
sum

÷ PTime, ’ Undecidable [DGM17]

WA
max
sum

(© WMSO-logic [DG07])
÷ PTime, ’ Undecidable [ABK11]

simple expressions
÷, ’ PSpace-C [Vel12]

monolithic expressions
(© Parikh automata Lemma 3.1.6)

÷, ’ PSpace-C Theorem 3.1.7

synchronous expressions
÷, ’ Decidable Theorem 3.2.8

iterable expressions
÷, ’ Undecidable Theorem 3.2.5synchronous WCA

÷, ’ Decidable Theorem 3.4.4

(unambiguous) WCA

÷, ’ Undecidable Corollary 3.3.7

÷ : quantitative emptiness
’ : quantitative universality
- - : decidability frontier

Figure 7.3: Comparison between the weighted expression formalisms and the weighted
chop automata (WCA) introduced in Chapter 3, as well as classes of weighted automata
(WA

max
sum). The arrows denote strict inclusion between the classes of quantitative languages

defined by the formalisms and dashed arrows highlights when the frontier of decidability
is cross.

The contribution follows three main axes. The first part focuses on computational
models that manipulate integer weights with arithmetical operations featuring a tread-o�
between the expressibility of quantitative properties and the feasibility of time/memory
requirements. In particular, we introduced the programming languages monolithic and
iterable expressions that can combine functions realized by weighted automata using
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the Presburger arithmetic. The second part, investigate error/noise formalisms and ro-
bustness synthesis to relax the standard model-checking approach with a parametric
disturbance. Our approach provides a measure of confidence about the model-checking
answer adapted for erroneous systems (as sensors) and specifications (from statistical
observations for instance). The third part, introduce new specification languages that
allow us to define and e�ciently decide structural properties for popular automata classes
(regular automata, transducers, weighted automata). In fact, to retain the feasibility and
tractability of model-checking algorithms, the verification community introduces many
pattern criteria expressible into this logical formalisms.

Figure 7.3 presents the main formalisms that have been studied from literature and
from Part I. It orders them depending on their expressiveness (models on bottom are
less expressive than the ones on top). It also recalls some structural pattern as finite
valuedness or linear ambiguity which can be express in the pattern logic introduced
in Part III. In Part II, we model noise with weighed transducers. In the case of Sum-
transducer, we rely on automata weighed over N to solve the robust kernel synthesis
Lemma 5.1.2. Note that, the monolithic expressions are closed under Presburger definable
functions which allows us to express various word metrics and so, is a good candidate as
model of noise.

For sack for fact, we explain here how the finite valuedness restriction on Sum-
transducer over Z raise computability of the robust kernel. Formally, we consider the
specification language L given by a DFA A, we let T be a k-valued Sum-transducer which
model input noise and we take ‹ œ Z as errors threshold. We show now how to rep-
resent the set of words RobT (‹, L), i.e. the robust kernel. First, we construct the finite
valued sum-automaton N from T by restricting its output domain to belongs to L and
then we remove the output words.[VII] Thanks to [SdS10], we can decomposed N into k

unambiguous sum-automata N1, . . . , Nk such that [[N ]] =
t

k

i=1[[Ni]]. Hence, we defined
the monolithic expression E = min(N1, . . . , Nk) that denotes the function from a word
of dom(T ) to the cost of the minimal rewriting that belongs to L.[VIII] In order to repre-
sent RobT (‹, L), we need to bounded the images of E, which is doable since monolithic
expressions are close by Presburger definable function, let E|‹ be restriction of E. The
robust kernel is thus the domain of E|‹ which is regular by Proposition 3.2.4.

[VII]
The construction is in a similar vain of the weighted transition system GT,A of Section 4.2 but input

are preserved.

[VIII]
Here, the combinator could be replaced by any existential Presburger functional formula Ï : Zk æ Z.
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madi, and James Worrell. Coverability in 1-vass with disequality tests. Com-
puting Research Repository, abs/1902.06576, 2019.

Cited 1 time on page 23.

[AFR14] Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combi-
nators for string transformations. In Thomas A. Henzinger and Dale Miller,
editors, Proceedings of the joint meeting of the 23th Annual Conference of the
European Association for Computer Science Logic, CSL’14 and the 29th An-
nual ACM/IEEE Symposium on Logic in Computer Science, LICS’14, pages
9:1–9:10. ACM, 2014.

Cited 5 times on pages 4, 29, 35, 45, and 93.

[AH15] Takumi Akazaki and Ichiro Hasuo. Time robustness in MTL and expressivity
in hybrid system falsification. In Daniel Kroening and Corina S. Pasareanu,
editors, Part II of proceedings of the 27th International Conference on Com-
puter Aided Verification, CAV’15, volume 9207 of Lecture Notes in Computer
Science series, pages 356–374. Springer, 2015.

Cited 1 time on page 58.

[AKTY13] Rajeev Alur, Sampath Kannan, Kevin Tian, and Yifei Yuan. On the com-
plexity of shortest path problems on discounted cost graphs. In Adrian-Horia
Dediu, Carlos Mart́ın-Vide, and Bianca Truthe, editors, Proceedings of the
7th International Conference on Language and Automata Theory and Appli-
cations, LATA’13, volume 7810 of Lecture Notes in Computer Science series,
pages 44–55. Springer, 2013.

Cited 1 time on page 53.

[AM03] Cyril Allauzen and Mehryar Mohri. E�cient algorithms for testing the twins
property. Journal of Automata, Languages and Combinatorics, 8(2):117–144,
2003.

Cited 1 time on page 8.

[AMR11] Cyril Allauzen, Mehryar Mohri, and Ashish Rastogi. General algorithms for
testing the ambiguity of finite automata and the double-tape ambiguity of
finite-state transducers. International Journal of Foundations of Computer
Science, 22(4):883–904, 2011.

Cited 1 time on page 71.

[AR13] Rajeev Alur and Mukund Raghothaman. Decision problems for additive reg-
ular functions. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska,
and David Peleg, editors, Part II of proceedings of the 40th International
Colloquium on Automata, Languages, and Programming, ICALP’13, volume
7966 of Lecture Notes in Computer Science series, pages 37–48. Springer,
2013.

Cited 1 time on page 44.



96 Bibliography
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arithmetik ganzer zahlen. In Sprawozdanie z I Kongresu metematyków
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Abstract

Reactive systems are computer systems that maintain continuous interaction with the environ-
ment in which they operate. Such systems are nowadays part of our daily life: think about common
yet critical applications like engine control units in automotive, aircraft autopilots, medical aided-
devices, or micro-controllers in mass production. Clearly, any flaw in such critical systems can have
catastrophic consequences. However, they exhibit several characteristics, like resource limitation
constraints, real-time responsiveness, concurrency that make them di�cult to implement correctly.
To ensure the design of reactive systems that are dependable, safe, and e�cient, researchers and
industrials have advocated the use of so-called formal methods, that rely on mathematical models
to express precisely and analyze the behaviors of these systems.

Automata theory provides a fundamental notion such as languages of program executions for
which membership, emptiness, inclusion, and equivalence problems allow us to specify and verify
properties of reactive systems. However, these Boolean notions yield the correctness of the sys-
tem against a given property that sometimes, falls short of being satisfactory answers when the
performances are prone to errors. As a consequence, a common engineering approach is not just
to verify that a system satisfies a property, but whether it does so within a degree of quality and
robustness.

This thesis investigates the expressibility, recognition, and robustness of quantitative properties
for program executions.

• Firstly, we provide a survey on languages definable by regular automata with Presburger
definable constraints on letter occurrences for which we provide descriptive complexity. In-
spired by this model, we introduce an expression formalism that mixes formula and automata
to define quantitative languages i.e. function from words to integers. These expressions use
Presburger arithmetic to combine values given by regular automata weighted by integers.
We show that quantitative versions of the classical decision problems such as emptiness, uni-
versality, inclusion, and equivalence are computable. Then we investigate the extension of
our expressions with a “Kleene star” style operator. This allows us to iterate an expression
over smaller fragments of the input word, and to combine the results by taking their iterated
sum. The decision problems quickly turn out to be not computable, but we introduce a new
subclass based on a structural restriction for which algorithmic procedures exist.

• Secondly, we consider a notion of robustness that places a distance on words, thus defining
neighborhoods of program executions. A language is said to be robust if the membership
satisfiability cannot di�er for two “close” words, and that leads to robust versions of all the
classical decision problems. Our contribution is to study robustness verification problems
in the context of weighted transducers with di�erent measures (sum, mean-payo�, and dis-
counted sum). Here, the value associated by the transducer to rewrite a word into another
denotes the cost of the noise that this rewriting induce. For each measure, we provide al-
gorithms that determine whether a language is robust up to a given threshold of error and
we solve the synthesis of the robust kernel for the sum measure. Furthermore, we provide
case studies including modeling human control failures and approximate recognition of type-1
diabetes using robust detection of blood sugar level swings.

• Finally, we observe that algorithms for structural patterns recognition of automata often
share similar techniques. So, we introduce a generic logic to express structural properties of
automata with outputs in some monoid, in particular, the set of predicates talking about the
output values is parametric. Then, we consider three particular automata models (regular
automata, transducers, and automata weighted by integers) and instantiate the generic logic
for each of them. We give tight complexity results for the three logics with respect to the
pattern recognition problem. We study the expressiveness of our logics by expressing classical
structural patterns characterizing for instance unambiguity and polynomial ambiguity in the
case of regular automata, determinizability, and finite-valuedness in the case of transducers
and automata weighted by integers. As a consequence of our complexity results, we directly
obtain that these classical properties can be decided in logarithmic space.
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