TACAS 2025 - Hamilton Canada

Marek Chalupa ¹
Thomas A. Henzinger ¹
Nicolas Mazzocchi ^{1 2}
N. Ege Saraç ¹

- (1) Institute of Science and Technology, Austria
- (2) Slovak University of Technology in Bratislava, Slovakia

This talk is supported by the ERC-2020-AdG 101020093

Automating the Analysis of Quantitative Automata with QuAK

Boolean Setting

Definition

A Boolean property $\Phi \subseteq \Sigma^{\omega}$ or equivalently $\Phi \colon \Sigma^{\omega} \to \{0,1\}$, is a language

Safety Requests Not Duplicated

Boolean Setting

Definition

A Boolean property $\Phi\subseteq \Sigma^\omega$ or equivalently $\Phi\colon \Sigma^\omega \to \{0,1\}$, is a language

Safety

Requests Not Duplicated

Liveness

All Requests Granted

Theorem: Decomposition¹

All Boolean property Φ can be expressed by $\Phi = \Phi_{\mathsf{safe}} \cap \Phi_{\mathsf{live}}$

 $\Phi_{\rm safe}$ is safe

 Φ_{live} is live

¹ Alpern, Schneider. Defining liveness. 1985

Quantitative Setting

Definition

A quantitative property $^2 \Phi \colon \Sigma^\omega o \mathbb{D}$ is a quantitative language where \mathbb{D} is a complete lattice

Quantitative Setting

Definition

A quantitative property² $\Phi \colon \Sigma^\omega \to \mathbb{D}$ is a quantitative language where \mathbb{D} is a complete lattice

Theorem: Decomposition³

All quantitative property Φ can be expressed by $\Phi(w) = \min\{\Phi_{safe}(w), \Phi_{live}(w)\}$ for all $w \in \Sigma^{\omega}$ $\Phi_{safe} \text{ is quantitative safe}$ $\Phi_{live} \text{ is quantitative live}$

³ Henzinger, Mazzocchi, Saraç. *Quantitative Safety and Liveness*. 2023

Quantitative Automata

Value function Val

Inf, Sup, LimInf, LimSup LimInfAvg, LimSupAvg

Quantitative Automata

Value function Val

Inf, Sup, LimInf, LimSup LimInfAvg, LimSupAvg

Quantitative Automata

Runs $\xrightarrow{a_1|x_1} \xrightarrow{a_2|x_2} \xrightarrow{----}$ Input: $w = a_1 a_2 \dots$ Output: $x = Val(x_1 x_2 \dots)$

Subset of quantitative properties⁴

- $\Phi \colon \Sigma^\omega \to \mathbb{D}$ where \mathbb{D} is a complete lattice
- totally ordered domain
- finitely many weights
- supremum-closed

Value function Val

Inf, Sup, LimInf, LimSup LimInfAvg, LimSupAvg

Non-determinism |w|x |x| |w|y |x| |x|

⁴ Chatterjee, Doyen, Henzinger. *Quantitative Languages*. 2010

Intuition

Every **wrong** hypothesis $\Phi(w) \ge x$ can always be rejected after a finite number of observations

Intuition

Every **wrong** hypothesis $\Phi(w) \ge x$ can always be rejected after a finite number of observations

Example: Minimal Response Time

- $ightarrow \Sigma = \{r, g, t, o\}$ r: request, g: grant, t: clock-tick, o: other
- $m{\Phi}_{\sf min}(w) = {\sf greatest}$ lower bound on the occurrences of t between all matching ${f r}/{f g}$ in w

Intuition

Every **wrong** hypothesis $\Phi(w) \ge x$ can always be rejected after a finite number of observations

Example: Minimal Response Time

- $ightarrow \Sigma = \{r, g, t, o\}$ r: request, g: grant, t: clock-tick, o: other
- $\Phi_{\min}(w)=$ greatest lower bound on the occurrences of t between all matching r/g in w

Definition⁵: A quantitative property $\Phi: \Sigma^{\omega} \to \mathbb{D}$ is safe when

$$\forall x \in \mathbb{D} : \forall w \in \Sigma^{\omega} : \varPhi(w) \not \geq x \implies \exists u \sqsubseteq w : \sup_{v \in \Sigma^{\omega}} \varPhi(uv) \not \geq x$$

Intuition

Every **wrong** hypothesis $\Phi(w) \ge x$ can always be rejected after a finite number of observations

Example: Minimal Response Time

- $\Sigma = \{r, g, t, o\}$ r: request, g: grant, t: clock-tick, o: other
- $m{\Phi}_{\sf min}(w) = {\sf greatest}$ lower bound on the occurrences of t between all matching ${f r}/{f g}$ in w

Definition⁵: A quantitative property $\Phi: \Sigma^{\omega} \to \mathbb{D}$ is safe when

$$\forall x \in \mathbb{D} : \forall w \in \Sigma^{\omega} : \Phi(w) \not \geq x \implies \exists u \sqsubseteq w : \sup_{v \in \Sigma^{\omega}} \Phi(uv) \not \geq x$$

Theorem⁵: Φ is safe $\iff \Phi = \Phi^*$ where Φ^* is the safety closure of Φ

⁵ Henzinger, Mazzocchi, Saraç. *Quantitative Safety and Liveness*. 2023

Intuition

Some **wrong** hypothesis $\Phi(w) \ge x$ can never be rejected after any finite number of observations

Intuition

Some **wrong** hypothesis $\Phi(w) \ge x$ can never be rejected after any finite number of observations

Example: Average Response Time

- $\Sigma = \{r, g, t, o\}$
- $arPhi_{\mathsf{avg}}(w) = \mathsf{average}$ on the occurrences of t between all matching r/g in w

Intuition

Some **wrong** hypothesis $\Phi(w) \ge x$ can never be rejected after any finite number of observations

Example: Average Response Time

- $\blacktriangleright \ \Sigma = \{\texttt{r}, \texttt{g}, \texttt{t}, \texttt{o}\}$
- $arPhi_{\mathsf{avg}}(w) = \mathsf{average}$ on the occurrences of t between all matching \mathtt{r}/\mathtt{g} in w

Definition⁶: A quantitative property $\Phi: \Sigma^{\omega} \to \mathbb{D}$ is live when

$$\forall w \in \Sigma^{\omega} : \Phi(w) < \top \implies \exists x \in \mathbb{D} : \Phi(w) \not\geq x \land \forall u \sqsubseteq w : \sup_{v \in \Sigma^{\omega}} \Phi(uv) \geq x$$

Intuition

Some **wrong** hypothesis $\Phi(w) \ge x$ can never be rejected after any finite number of observations

Example: Average Response Time

- $\Sigma = \{r, g, t, o\}$
- $arPhi_{\mathsf{avg}}(w) = \mathsf{average}$ on the occurrences of t between all matching \mathtt{r}/\mathtt{g} in w

Definition⁶: A quantitative property $\Phi: \Sigma^{\omega} \to \mathbb{D}$ is live when

$$\forall w \in \Sigma^{\omega} : \Phi(w) < \top \implies \exists x \in \mathbb{D} : \Phi(w) \not\geq x \land \forall u \sqsubseteq w : \sup_{v \in \Sigma^{\omega}} \Phi(uv) \geq x$$

Theorem⁶: Φ is live $\iff \forall w : \Phi^*(w) = \top$ where Φ is supremum closed

⁶ Henzinger, Mazzocchi, Saraç. Quantitative Safety and Liveness. 2023

Safety-Liveness Decomposition

Safety-Liveness Decomposition

$$A(w) = \min\{A_{\mathsf{safe}}(w), A_{\mathsf{live}}(w)\}$$

QuAK's Library

	Input	Problem	Val
Top value ⊤	А	$ op = \sup\{A(w): w \in \Sigma^\omega\}$	-
Bottom value ⊥	А	$\perp = \inf\{A(w) : w \in \Sigma^{\omega}\}$	
Safety closure A^*	А	Least safe over approximation of A -	
Non-emptiness	A, x	$\exists w \in \Sigma^{\omega} : A(w) \geq x \iff \top \geq x$	-
Universality	A, x	$\forall w \in \Sigma^{\omega} : A(w) \geq x \iff \bot \geq x$	$\neq Avg$
Inclusion	A, B	$\forall w \in \Sigma^{\omega} : A(w) \geq B(w)$	
Constant	Α	$\forall w \in \Sigma^{\omega} : A(w_1) = \top$	
Safety	Α	$\forall w \in \Sigma^{\omega} : A^{\star}(w) = A(w)$	
Liveness	Α	$\forall w \in \Sigma^{\omega} : A^{\star}(w) = \top$	
Decomposition	Α	$\forall w \in \Sigma^{\omega} : A(w) = \min\{A_{safe}(w), A_{live}(w)\}$ -	

QuAK's Library

	Input	Problem	Val
Top value ⊤	А	$ op = \sup\{A(w): w \in \Sigma^\omega\}$	-
Bottom value ⊥	А	$ot = \inf\{A(w) : w \in \Sigma^{\omega}\}$	$\neq Avg$
Safety closure A^{\star}	А	Least safe over approximation of A -	
Non-emptiness	A, x	$\exists w \in \Sigma^{\omega} : A(w) \geq x \iff \top \geq x$	-
Universality	A, x	$\forall w \in \Sigma^{\omega} : A(w) \geq x \iff \bot \geq x$	$\neq Avg$
Inclusion	A, B	$\forall w \in \Sigma^{\omega} : A(w) \geq B(w)$ \neq	
Constant	А	$orall w \in \Sigma^\omega : A(w_1) = op$	
Safety	Α	$\forall w \in \Sigma^{\omega} : A^{\star}(w) = A(w)$	
Liveness	А	$orall w \in \Sigma^\omega : A^\star(w) = op$	
Decomposition	Α	$\forall w \in \Sigma^{\omega} : A(w) = \min\{A_{safe}(w), A_{live}(w)\}$	

Complexities

	Inf	Sup, LimInf, LimSup	LimInfAvg, LimSupAvg		
Is A non-empty?	PTIME				
i.e., $\top \geq x$	F 1 IME				
Is A universal?	Р	SPACE-complete	Undecidable		
i.e., $\perp \geq x$	1 SPACE-complete Officeduable				
Is A constant? ⁷	PSpace-complete				
i.e., $\top = A = \bot$	1 SPACE-Complete				
Is A safe? ⁷	O(1)	PSPACE-complete	EXPSPACE \ PSPACE-hard		
i.e., $A^* = A$			EXPSPACE \ 1 SPACE-Haid		
Is A live? ⁷	PSPACE-complete				
i.e., $A^\star = \top$	r SPACE-complete				

⁷ Boker, Henzinger, Mazzocchi, Saraç. Safety and Liveness of Quantitative Automata. 2023

Efficient constant testing

▶ Constant check without relying on the limitedness of distance automata⁸

Efficient constant testing

▶ Constant check without relying on the limitedness of distance automata⁸

Efficient inclusion testing

▶ Generalization of the antichain based inclusion of FORKLIFT⁹

Efficient constant testing

▶ Constant check without relying on the limitedness of distance automata⁸

Efficient inclusion testing

Generalization of the antichain based inclusion of FORKLIFT⁹

Exhaustive decomposition framework

 PTIME safety-liveness decomposition for all quantitative automata (including LimSup, LimInfAvg and LimSupAvg automata previously left open 10)

¹⁰ Boker, Henzinger, Mazzocchi, Saraç. Safety and Liveness of Quantitative Automata. 2023

Nicolas Mazzocchi funding: ERC-2020-AdG 101020093

Efficient constant testing

Constant check without relying on the limitedness of distance automata⁸

Efficient inclusion testing

Generalization of the antichain based inclusion of FORKLIFT⁹

Exhaustive decomposition framework

 PTIME safety-liveness decomposition for all quantitative automata (including LimSup, LimInfAvg and LimSupAvg automata previously left open¹⁰)

Thank you