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The sequencing 
boom
• Modern single-cell sequencing 

enables observations orders of 
magnitude more precise than 
10-20 years ago.

• Activity of thousands of genes 
across thousands of cells, 
tissues and mutations.

• How do we rigorously use this 
data to understand complex 
biological systems?



Mechanistic 
modelling
• Mechanistic models:

• Grounded in explainable 
biochemical principles.

• “Black box” model learns to 
answer questions.

• “Mechanistic” model helps to 
design new questions. 

• Boolean networks: 
• Simple, massively parallel 

programs emulating gene 
regulation.



Where are we going?
• Synthesis/inference: 

• What models fit observed data? 
• Bonus round: what does it even 

mean to fit data?

• Selection/identifiability: 
• Which candidate model is the 

”best”? 
• How to design experiments to 

improve the candidate set?
• Can we learn something from an 

incomplete model?

• BDDs / ASP / SMT / SAT
• As always… scalability…

?
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Why neurosymbolic methods, why formal?

Safety-critical applications require formal correctness guarantees 
 



Learner-verifier framework [1,2,3]

Learner Verifier

Neural policy and neural certificate

[1] Chang, Roohi, Gao. Neural Lyapunov Control. NeurIPS 2019 
[2] Ravanbakhsh, Sankaranarayanan. Learning Control Lyapunov Functions from Counterexamples and Demonstrations. Autonomous Robots 2019 
[3] Abate, Ahmed, Giacobbe, Peruffo. Formal Synthesis of Lyapunov Neural Networks. IEEE Control Systems Letters 2020



Learner-verifier framework

What are learnable certificates for stochastic systems? 

How to learn these certificates? 

How to formally verify these certificates? 



Learner-verifier framework

 
Neural martingales as formal certificates


 
Learner-verifier loop for neural policies + martingales


(reachability [AAAI’22], reach-avoidance [AAAI’23], stability [ATVA’23], compositional reasoning [NeurIPS’23], Bayesian neural networks [NeurIPS’21])

Results*

*Joint work with Mathias Lechner, Krish, Tom, Matin Ansaripour, Abhinav Verma
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Richer specifications


 
Compositional reasoning about systems, neural policies and neural certificates


Scaling to larger systems

What’s next?
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SMT solvers

Satisfiability Modulo Theories (SMT) solvers support reasoning in (fragments of)
first-order logic:

i n t 3 2 i1 , i 2 ;
. . .
assume ( i 1 > 0 ) ;
a r r [ 0 ] = 1 ;
a r r [ i 1 + i 2 ] = 2 ;
a s s e r t ( a r r [ 0 ] = 1 ) ;

⇒

. . . ∧
i1 > 0 ∧

arr1 = store(arr0, 0, 1) ∧
arr2 = store(arr1, i1 + i2, 2) ∧

select(arr2, 0) ̸= 1

⇒

array0 7→ ⟨0, ..., 0⟩,
array1 7→ ⟨1, ..., 0⟩,
array2 7→ ⟨2, ..., 0⟩,

i1 7→ 231,

i2 7→ 231

The solver has efficient procedures for dealing with >, +, select, and store.
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My Current Research

▶ Custom theory reasoning (“user-propagation”) in Z3

▶ Solving combinatorial problems by oracles, lazy axioms, efficient custom theories
▶ Improve reasoning time
▶ Less memory required

▶ Non-classical logics in SMT
▶ e.g., ⊤ ⊑ (♢r .a < 1 ∧ ♢r .a > 1) (ALC)

▶ Theorem proving via weird calculi in SMT
▶ e.g., {{P(x)}; {P(a),¬P(x) ∨ P(f (x)),¬P(f (f (a)))}, ∅} (Connection Calculus)

▶ New (Nielson) string solver as theory extension
▶ ”a” ++ x = x ++ ”b”

Applying SMT Propagation to
“Everything”
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Designing Secure Systems

We need to consider:

 Multiple architectural layers.

 Sub-systems developed by different teams.

 Heterogeneous components.

 Interaction between cyber and physical components.

⇓
Contract-based design.
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Interface Theory

Luca de Alfaro and Thomas A. Henzinger. Interface theories for component-based design. (2001)

⟨I,⪯,∼,⊗⟩ where ⪯ is refinement, ∼ is compatibility, and ⊗ is composition.

Composition (⊗)

Refinement (⪯)
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Interface Theory

Incremental Design: Composition only requires knowledge about the parts being composed.

If F ∼ G and F ⊗ G ∼ H, then G ∼ H and F ∼ G ⊗ H.

Independent Implementability: Independent refinement of subsystems.

If F ∼ G and F ′ ⪯ F , then F ′ ∼ G and F ′ ⊗ G ⪯ F ⊗ G.
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Information-flow Interfaces

Ezio Bartocci, Thomas Ferrère, Thomas Henzinger, Dejan Nickovic, D., and Ana O. da Costa.
Information-flow interfaces. (2022)

Security policies abstracted as information-flow constraints.

Interfaces specify:

 disjoint sets of input and output variables, X ∩ Y = ∅;

 no-flow constraints on the environment as assumptions;

 no-flow requirements on implementations as open-guarantees;

 no-flow requirements on the closed-system as closed-guarantees.
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What is next?

 Explore formalisms to specify what is an information flow.

 Dive into real-world use cases.

 Explore the limits of interface theory for the design of secure systems.

6Ana O. da Costa — Interface Theory for Security and Privacy





Finding counterexamples to ∀∃-safety hyperproperties

. . . and other forays into incorrectness
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October 9, 2023
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∀∃-safety hyperproperties

Definition (informal, intuition)
“For each trace τ there exists a trace τ ′ such that τ and τ ′ do not interact badly.”

Example (Refinement)

∀Pτ ∃Qτ ′
(
inτ = inτ ′ ∧ outτ = outτ ′

)
Hint: y := x ∗ random(N)︸ ︷︷ ︸

P

refines y := x ∗ random(Z)︸ ︷︷ ︸
Q

, but not vice versa
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Verification of ∀∃ hyperproperties – unsurprisingly difficult

Undecidability of trace properties

+ quantification over multiple traces

+ quantifier alternation

Loops Infinite states Complete Counterexamples

Strategy-based approaches ✓ ✓ ✗ ✗

Automata-based approaches ✓ ✗ ✓ ✗

Relational Hoare-style logic ✗ ✓ ✓ ✓
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∀∃-safety hyperproperties – our approach to finding counterexamples

Goal: find model for negation of ∀∃-safety property

Combine underapproximate methods to find counterexamples

symbolic execution for universally quantified traces

bounded model checking for existentially quantified traces

lift both algorithms to an SMT solver for infinite variable domains

typically requires many iterations to exclude spurious refutations

Does this terminate? Sometimes. Maybe. It depends. . .
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Dynamical Systems

f : X × U → X

[forbes.com]



3 / 12

Learning Certificate Functions

Requirements

� Stability: Lynapunov function V : X → R

−→ certifies stability around a fixed point

� Safety: Barrier function h : X → R

−→ certifies invariance of a region

Verifying Certificates faces challenges

� Generalization error bounds: [Liu+’20, Boffi+’21, ChangGao’21]

� Lipschitz arguments : [Richards+’18, BobitiLazar’18]

� Learner-verifier: [Chang+’19, Peruffo+’21, Chatterjee+’23] etc
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Monitoring Certificate Functions

• Validating certificate at runtime
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Boolean Properties

Definition

A Boolean property Φ ⊆ Σω or equivalently Φ : Σω → {0, 1}, is a language

Safety

Requests Not Duplicated

Safety closure

smaller enlargement
to get a safe language

Liveness

All Requests Granted

Theorem: Decomposition of Boolean properties1

All property Φ can be expressed by: Φ = Φsafe ∩ Φlive

Φsafe is safe

Φlive is live

2
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Quantitative Properties

Definition2

A quantitative property Φ : Σω → D is a quantitative language where D is a complete lattice

Safety

Minimal Response Time

Safety closure

the least safety property that
bounds the original from above

Liveness

Average Response Time

Theorem: Decomposition of quantitative properties

All property Φ can be expressed by: Φ(w) = min{Φsafe(w), Φlive(w)} for all w ∈ Σω

Φsafe is safe

Φlive is live

2 Chatterjee, Doyen, Henzinger. Quantitative Languages. 2010
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Quantitative Automata

a1|x1 a2|x2

Word: w = a1a2 . . . Run value: x = f (x1x2 . . . )

Theorem1

The set {w ∈ Σω | A(w) = ⊤} is dense if and only
if the automaton A is live

Theorem4

An automaton is live if and only if its safety closure
is the constant ⊤

Value functions

Inf, Sup, LimInf, LimSup

LimInfAvg, LimSupAvg, DSum

Non-determinism

w |x

w |y

A(w) = sup{values of w ’s runs}
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Take away message

Inf Sup, LimInf, LimSup LimInfAvg, LimSupAvg DSum

Is it safe?

i.e., A⋆ = A
O(1) PSpace-complete ExpSpace PSpace-hard O(1)

Is it live?

i.e., A⋆ = ⊤
PSpace-complete

Decomposition

A = minAsafe Alive
O(1) PTime if deterministic Open O(1)

A⋆ is the Safety closure of A

1 T. A. Henzinger, N. Mazzocchi and
N. E. Saraç

Quantitative Safety and Liveness

In FOSSACS proceedings 2023

2 U. Boker, T. A. Henzinger, N. Mazzocchi
and N. E. Saraç

Safety and Liveness of Quantitative Automata

In CONCUR proceedings 2023

Thank you
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A Word-level Solver for Large Bitvectors
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PolySAT: a Word-level Solver for Large Bitvectors

Bitvectors?
1. Sequence of bits, e.g., 01011

2. Fixed-width machine integers, e.g., uint32_t, int64_t

3. Modular arithmetic: Z/2kZ

Examples:
I 2x2y + z = 3
I x + 3 ≤ x + y
I ¬Ω∗(x , y), z = x & y , x [3:0] = 0, . . .

I Negation, disjunction of constraints

Existing approaches: bit-blasting, translation to integers
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Example
x + 3 ≤ x + y mod 23

I For x = 0: 3 ≤ y ⇐⇒ y ∈ {3, 4, 5, 6, 7}
I For x = 2: 5 ≤ 2 + y ⇐⇒ y ∈ {3, 4, 5}

I x + 3 ≤ −y + 2 mod 23

PolySAT is a theory solver for bitvector arithmetic:
I Search for a model of the input formula
I Incrementally assign bitvector variables (e.g., x := 2)
I Propagate feasible sets, e.g.:

x := 2 ∧ x + 3 ≤ x + y =⇒ y ∈ {3, 4, 5} (mod 23)

I Add lemmas on demand, e.g.:
px < qx ∧ ¬Ω∗(p, x) =⇒ p < q
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Loops

A major challenge in formal verification

▶ Loop invariants
▶ Capture loop behavior as a logical formula: x + 3y2 = 2z3

▶ Used in program verification
▶ Automated invariant generation techniques based on symbolic

computation, algebraic recurrence equations, static analysis,
etc.

▶ Loop synthesis
▶ Synthesizing a program (loop) given a specification
▶ Program correctness by construction
▶ Specification: a polynomial loop invariant
▶ Applications in compiler optimization: single path loops, linear

updates
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Program Synthesis

▶ A framework based on saturation-based theorem proving.

▶ Specification: ∀x̄ .∃y .F [x̄ , y ]
▶ Framework output:

▶ A program with if-then-else statements
▶ A proof that the spec. holds (using Vampire)



Beyond

Something around SMT with Clark Barrett at Stanford
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• Goal: develop automated reasoning techniques w.r.t. amortised
cost analysis of (probabilistic) functional data structures

• Extend pilot project ATLAS based on type-and-effect system and
potential functions [Leutgeb, Moser, and Zuleger 2022]

• Current focus Zip Trees [Tarjan, Levy, and Timmel 2021]
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Overview

▶ Prominent model checking algorithm.

▶ builds multiple successive overapproximations of reachable
states simultaneously.

▶ looks for a proof of correctness by finding an inductive
invariant that is safe, otherwise gives a counter example.

▶ Building the invariant is guided by CTIs.

Ri ∧ T ∧ ¬P ′
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Aspects To Investigate

▶ The used heuristic for generalizing clauses

▶ Save and reuse CTIs

▶ Avoiding duplicate clauses.

▶ Global clauses

▶ Generalizing the CTIs further
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Incremental IC3

▶ Two related transition relations, T and Tc such that Tc ⊆ T .

▶ Reusing clauses directly

▶ Reusing CTIs and lifting them further

▶ Reusing the invariant
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All about Dynamical Systems

▶ Jumping particle:

X

T

▶ Transitions: xt+1 = f (xt).

▶ Can we reach T?
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Lyapunov Functions

Can we have a function V that

1. is non-negative: V (x) ≥ 0

2. decreases with every transition: V (x) > V (f (x))?

▶ For nonlinear systems, V is not easy to find.

▶ SMT for finding V ? Precise, but slow.

▶ Guided search for V ?
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Neural Lyapunov Functions

Let’s use a neural network to find V !

▶ Learning V ⇐= Loss Function + Gradient Descent

▶ Loss should capture V .

Catch! No guarantee for generalization.
Good news; we can use SMT solving.
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Is V All We Can Learn?

No.

▶ Replacing f with a neural network.
Benefit; NN instead of mathematical object.
Catch! 2 generalization queries instead of 1.

▶ More can be learned: partitioning X , error bounds, . . .
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Central Ideas

Goals

• Verify memory safety even in unsafe programs (e.g. C/unsafe in Rust)
• Make it usable (fully automatic, acceptable runtime, strong guarantees)

Approach

• Based on strong but manageable separation logic
• Symbolic execution with bi-abduction
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Previously: Sound Bi-abduction-based Shape Analysis
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Program Synthesis via {Saturation, SMT solving}

Petra Hozzová

supervised by Laura Kovács,
and working with Andrei Voronkov, Nikolaj Bjørner, Daneshvar Amrollahi, . . .
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Synthesis in saturation

Synthesize a program

term, possibly using if−then−else,
recursively defined functions,

and only containing computable symbols

computing y for any x such that

first-order formula,
x are inputs and y is the output

F (x , y) holds

using a saturation-based prover

using answer literals,
supporting derivation of clauses C ∨ ans(r) where C is computable,

expressing “if ¬C , then r is the program”

proving ∀x .∃y .F (x , y) using induction.
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Synthesis with SMT-solving

Synthesize a program

term, possibly using if−then−else,
and only containing computable symbols

computing the function f such that

first-order formula, f ’s arguments
are terms dependent on x

F (x , f ) holds

using quantifier elimination games

Using an interplay of two procedures, that in turns find interpretations of f and x .
If the final interpretation satisfies the formula, we learn a case in the program.

Otherwise we either learn a lemma or conclude the synthesis.

for ∃f .∀x .F (x , f ).*



Krishnendu Chatterjee, Thomas Henzinger,  Stefanie Muroya Lei

Quantum Information Markov Decision 
Processes for Robust Quantum Programs 

Synthesis



Quantum Algorithms 
Workflow

Q U A N T U M  S TAT E  
I N  A  W E L L  

D E F I N E D  S TAT E

A  P R O B A B I L I T Y  
D I S T R I B U T I O N  

O V E R  C L A S S I C A L  
S TAT E S

A P P LY  Q U A N T U M  
G AT E S  A N D  

M E A S U R E M E N T S



Challenges

- Quantum Computers are very noisy 

- The no-cloning theorem 

- We cannot directly observe quantum states 

- Quantum algorithms are hard to engineer



Input Output

: set of target statesT

T

: thresholdλ

λ

H

H: hardware spec.

Quantum Information Markov 
Decision Process

Program for H 
that reaches with

 from Pr(T) ≥ λ
O0O0

: distribution over statesO0

I

: set of instructionsI



Partially Observable Markov 
Decision Processes (POMDP)

A POMDP is a tuple  where: 

•  is a set of states 

•  is a set of actions 

•  is a set of observations 

•  is a 
probabilistic transition function 

•

⟨S, A, 𝒪, Δ, γ1⟩

S

A

𝒪

Δ : S × A × S → [0,1]

γ1 : S → 𝒪

Quantum Information Markov 
Decision Processes (QIMDP)

A QIMDP is a tuple  where: 

•  is a set of hybrid states 

•  is a set of instructions 

•  is a set of classical states 

•  is a 
probabilistic transition function 

•

⟨M, I, C, →H , γ2⟩

M

I

C

→H: M × I × M → [0,1]

γ2 : M → C



  

Daniela Kaufmann

CALGSAT
Combining Computer Algebra with SAT Solving 



  

● Recent success in formal verification
● word-level and bit-level models
● general purpose solvers
● returns all solutions

C ALGomputer ebra

● Over 50 years of research → “Killer application’’
● bit-level models
● dedicated heuristics and solving engines 
● single assignments

SAT Solving

SAT Solver

Propositional Logic Formula

Single assignments

Model

Reasoning 
Engine

Solution

Computer Algebra System

System with all solutions

Polynomial System 



  

Circuit Verification

Computer algebra + SAT 
solves 384/384

SAT solves 0/384

Computer algebra 
solves 254/384

[1] Kaufmann, Biere, Kauers. Verifying Large Multipliers by Combining SAT and Computer Algebra. FMCAD 2019: 28-36



  

C ALGomputer ebra

Pseudo-Boolean Integer Polynomials

● Hardware verification

Variables represent signals in circuits
Integer coefficients for word-level 
specification Polynomials in finite domains

● Verification of cryptosystems

Variables and coefficients are used 
to represent states of the system
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Theory Reasoning in Saturation Theorem Proving

• Saturation Algorithms

• Assume ¬φ
• Apply a set of rules exhaustively

• Until contradiction found or no rules applicable

• Mainly for Uninterpreted Symbols

• Theory Reasoning

• Symbols have predefined meaning (e.g. +, <)

• Naively handled with axioms (e.g. x < y ∧ y < z → x < z)

• Problem: Very explosive!

x0 < x1 ∧ x1 < x2 → x0 < x2

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 → x0 < x3

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 ∧ x3 < x4 → x0 < x4

. . .

x0 < x1 x1 < x2
x0 < x2
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Theory Reasoning in Saturation Theorem Proving

Background Theories T + Quantifiers

• Naive approach: Axioms

• Better approach: Special Inference Systems

• ALASCA (done)

• Linear Real Arithmetic + Uninterpreted Functions

• Beats State of the Art

• ALASCAI (in progress)

• ALASCA + Floor Function

• Allows for integer reasoning

2
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Bidding Games taking Charge
…in theory and in practice

Kaushik Mallik

Henzinger Group
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Bid-Tac-Toe

€ 71 € 9
€ 61 € 19
€ 41 € 39

7
8

+ ε
1
8

− ε

40 39

[Lazarus et al. ’99, Develin & Payne ’08, Meir et al. ’18, Avni et al. ’19,…]

Does the threshold exist?

Verify if the threshold < 0.5.

Characterize the winning strategies.
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Automated Analysis
of Probabilistic Loops

Marcel Moosbrugger

ISTA – October 2023
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Probabilistic programs/loops as universal models.



stop := 0
y := 1
x := 0
while stop == 0:

stop := flip_coin()
y := 2y
x := x + 1

Develop PL & verification techniques 
to analyze probabilistic loops

MY PHD PROJECT

Termination Analysis
[ESOP 2021, FM 2021, FMSD 2022]

Invariant Synthesis
[OOPSLA 2022, SAS 2022, FMSD 2023]

Focus on: automation, exact results 
(no sampling)

Sensitivity Analysis
[iFM 2023]

Predicting movement of robots under uncertainty 
[QEST 2022, TOMACS 2023]



stop := 0
y := 1
x := 0
while stop == 0:

stop := flip_coin()
y := 2y
x := x + 1

Develop PL & verification techniques 
to analyze probabilistic loops

MY PHD PROJECT

Focus on: automation, exact results 
(no sampling)

Ongoing Work

Theoretical foundations: Hardness bounds
Stability of control systems with uncertainty

Polar Tool:
Probabilistic Loop Analyzer

https://github.com/probing-lab/polar

https://github.com/probing-lab/polar


Solving Stochastic Games 
Reliably

Maximilian Weininger

ISTA Seminar
09.10.2023
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The superposition calculus

▶ The superposition calculus is the state-of-the-art approach for first-order
equational logic

s[u] ▷◁ t ∨ C l ≃ r ∨ D

(s[r ] ▷◁ t ∨ C ∨ D)θ

where θ = mgu(u, l), u not a variable, rθ ̸⪰ lθ, tθ ̸⪰ s[u]θ and Cθ ̸⪰ s[u] ▷◁ tθ

▶ Strong restrictions on the inferences and redundancy elimination make it efficient

▶ It can also be adapted to arithmetic, induction, HOL, etc.

Example

Given f > a > b > c

P(f (f (a, x), c)) f (f (y , b), z) ≃ f (y , f (b, z))
θ =


x 7→ b,
y 7→ a,
z 7→ c

P(f (a, f (b, c))))
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The orderedness redundancy criteria

Given f > a > b > c and clause f (x , y) ≃ f (y , x), this inference is redundant:

f (a, b) ≃ f (b, a)

P(f (f (a, b), c)) f (f (a, b), c) ≃ f (a, f (b, c))

reduces smaller than

P(f (f (a, x), c)) f (f (y , b), z) ≃ f (y , f (b, z))
θ =


x 7→ b,
y 7→ a,
z 7→ c

P(f (a, f (b, c))))

Orderedness is a generalization of compositeness from completion-based theorem
proving.
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Ground orderedness

Given clauses {f (x , y) ≃ f (y , x), f (x , x) ≃ x}, consider the inference:

Q(f (f (x , y), z), f (y , x)) f (f (x , y), z) ≃ f (x , f (y , z))

Q(f (x , f (y , z)), f (y , x))

The inference is redundant w.r.t. ground orderedness!

Both orderedness and ground orderedness are currently being implemented in Vampire
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Wait, wasn’t that a solved problem?

DRAT proofs haveweird semantics

can derive clauses not implied by the premises

mutation
semantics

new SAT proof
systems shorter proofs

easier to generate
clearer semantics

smaller unsat cores

can we extract interpolants?

extension to
QBF solving

can we unify QBF proof systems?

extension to
model counting

can we uniformly sample?
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Recognizing an Owl·Bear in the Forest
Regular Languages of Tree-Width Bounded Graphs
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October 4, 2023
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Finite alphabet A of terminal symbols e.g. {a, b, c, . . . , z}

Regular languages
Regular Expression
Automaton
Generated by Regular
Grammar
Definable:
Monadic Second-Order
Logic
Recognizable:
Inverse image under
homomorphism into a finite
monoid

Words
Words form a monoid 〈Σ∗, ε, ·〉

owl · bear = owlbear

Mark Chimes Recognizing an Owl·Bear in the Forest



Finite alphabet A of terminal symbols e.g. {a, b, c, . . . , z}

Words
Words form a monoid 〈Σ∗, ε, ·〉

Graphs - Generalize Words
Label edges with symbols in A

Need to know how to
combine two graphs
Vertices are not ordered, but
finitely many are numbered
Graph operations combine
graphs along numbers

Graphs form a Multi-Sorted
Magma - generalizes Monoid.

owl · bear = owlbear

•

1 2
•

↑

1 • 2
=
•

1 • 2
•

a b

c d

a b

a b
a b

c d

Mark Chimes Recognizing an Owl·Bear in the Forest



Families of graphs (Languages) with bounded tree-width

Regular languages of Graphs
Regular Expression
Automaton
Generated by Regular
Grammar
Definable:
Monadic Second-Order
Logic with counting
Recognizable:
Inverse image under
homomorphism into a
locally-finite multi-sorted
Magma

Mark Chimes Recognizing an Owl·Bear in the Forest
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Introduction
Background

Classical results
Our results

Main idea

Classical settings. Matrix games and Linear Programming (LP).
Classical question. Stability:

How do our objects of interest change upon perturbations?

Observables. Solutions and value of the problems.

How do solutions and value change
upon perturbations?

Raimundo Saona Value-Positivity for Matrix Games



Introduction
Background

Classical results
Our results

Matrix Games

j

i

 mi ,j


valM := max

p∈∆[m]
min

q∈∆[n]
ptMq .

M(ε) = M0 +M1ε .

Raimundo Saona Value-Positivity for Matrix Games



Introduction
Background

Classical results
Our results

Derivative of the value function [Mills56]

Define

DvalM(0+) := lim
ε→0+

valM(ε)− valM(0)

ε
.

Results.

1 Characterization of DvalM(0+).

2 (Poly-time) algorithm for computing it.

Theorem ([Mills56])

Given M(ε) = M0 +M1ε,

DvalM(0+) = valP(M0)×Q(M0)M1 .

Raimundo Saona Value-Positivity for Matrix Games



Introduction
Background

Classical results
Our results

Our framework

Polynomial matrix games. Matrix games where payoff entries are
given by polynomials.

M(ε) = M0 +M1ε+ . . .+MKε
K .

Definition (Value-positivity problem)

∃ε0 > 0 such that ∀ε ∈ [0, ε0] valM(ε) ≥ valM(0) .

Definition (Uniform value-positivity problem)

∃p0 ∈ ∆[m] ∃ε0 > 0 ∀ε ∈ [0, ε0] val(M(ε); p0) ≥ valM(0).

Definition (Functional form problem)

Return the maps valM(·) and p∗(·), for ε ∈ [0, ε0].

Raimundo Saona Value-Positivity for Matrix Games



Introduction
Background

Classical results
Our results

Polynomial matrix game

Consider ε > 0.

M(ε) =

(
1 −1
−1 1

)
+

(
1 −3
0 2

)
ε .

The optimal strategy is given by, for ε < 1/2,

p∗ε =

(
1 + ε

2 + 3ε
,
1 + 2ε

2 + 3ε

)t

.

Therefore,

valM(ε) =
ε2

2 + 3ε
.

Raimundo Saona Value-Positivity for Matrix Games



Introduction
Background

Classical results
Our results

Polynomial matrix game, negative direction

Consider ε > 0.

M(ε) =

(
1 −1
−1 1

)
+

(
−1 3
0 −2

)
ε .

The optimal strategy is given by, for ε < 2/3,

p∗ε =

(
1− ε

2− 3ε
,
1− 2ε

2− 3ε

)t

.

Therefore,

valM(ε) =
ε2

2− 3ε
.

Raimundo Saona Value-Positivity for Matrix Games



Statistical Monitoring of 
Stochastic Systems

(with focus on Algorithmic Fairness)



2

f : Σ* → ℝ

some function



3

⃗X := (Xt)t>0

a stochastic process



4

t ∈ ℕ+

at any point in time



5

⃗xt := x1, …, xt

observe a realisation



6

𝔼( f( ⃗X t) ∣ ⃗xI)
want to compute

I ⊆ [1; t]



7

Too many coins. 
Example.



8

X1

X2

X3
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X1

X2

X3

⋮ ⋮ ⋮ ⋮
Coin 5Coin 4 Coin 6 Coin 7

Coin 3Coin 2

Coin 1

⋮

HT

T T HH
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⋮ ⋮ ⋮ ⋮
p5 = 0p4 = 1 p6 = 0.5 p7 = 0.5

p3 = 0.2p2 = 0

p1 = 0.5

⋮

HT

T T HH



Is this process “fair”

11

Many different definitions.



12

H Tℙ( )−ℙ( )



How fair is it…

13

…at time t? 



14

⋮ ⋮ ⋮ ⋮
p5 = 0p4 = 1 p6 = 0.5 p7 = 0.5

p3 = 0.2p2 = 0

p1 = 0.5

⋮

HT

T T HH

𝔼(X3)
Property:
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x3 = T

x2 = H

x1 = H



How fair is it…

16

…at this very moment? 



17

⋮ ⋮ ⋮ ⋮
p5 = 0p4 = 1 p6 = 0.5 p7 = 0.5

p3 = 0.2p2 = 0

p1 = 0.5

⋮

HT

T T HH

𝔼(X3 |x1, x2)
Property:



The model could be…

18

… too big. 
… wrong. 
… hidden. 

… mistrusted.



But maybe

19

you have some… 



20

ℙ ∈ 𝒫

assumptions



21

̂Ef( ⃗xt)

you estimate



22

What is the general setting?
The Big Picture.



23

xt+3 xt+2 xt+1 xt xt−1 xt−2 …⃗X



24

xt+3 xt+2 xt+1 𝒜 xt xt−1 xt−2 …⃗X



25

xt+3 xt+2 xt+1 𝒜 xt xt−1 xt−2 …

[l, u]

 with probability 𝔼( f( ⃗X ) ∣ ⃗xI) ∈ 𝒜( ⃗xt ) 1 − δ

⃗X



26

A quick overview. 
Previous Work.
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MCsSystem

ℙ(r |q)Property

Henzinger et al. “Monitoring Algorithmic Fairness.” CAV 2023.
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some POMCs

𝔼( f(Xt:t+n))

Henzinger et al. “Monitoring Algorithmic Fairness under Partial Observations.” RV 2023.

System

Property
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𝔼(Xt+1 ∣ ⃗xt) = 𝔼(Xt ∣ ⃗xt−1) + Δ(xt)System

𝔼( f(Xt) ∣ ⃗xt−1)Property

Henzinger et al. "Runtime Monitoring of Dynamic Fairness Properties." FAccT 2023.



30

What are we doing?
Summary.



31

Interested in monitoring “distributional” properties,  
e.g. conditional expectation, of stochastic processes.

We focused on monitoring Algorithmic Fairness,   
but those techniques have wide applicability.

Leverage tools from non-asymptotic statistics to 
provide valid guarantees for each time step.

Use statistical monitoring to breach  
the gap between the model and reality.



On the decidability
of algebraic loop analysis

Anton Varonka

2nd year PhD student supervised by Laura Kovács

Anton Varonka Program loops, algebraically 9th October 2023



In my PhD project, I explore the decidability landscape of
verification-motivated problems, in particular, those that underlie automated

reasoning about program loops.

code fragment ←→ behaviours

model loops as dynamical systems, i.e., algebraic program analysis

linear vs not

Anton Varonka Program loops, algebraically 9th October 2023



What is it all about

A simple loop acting on a vector x of integer variables.

Program correctness:

Termination on all branches

Finding good invariants

q0 q1
x := c

x := A1x + b1

x := A2x + b2

x := A3x + b3

Anton Varonka Program loops, algebraically 9th October 2023



Loops and invariants

Loop Invariant
invariant generation

loop synthesis

(x , y) := (0, 0)
while y < N do

x := x + 2y + 1
y := y + 1

y = x2

holds before and after
each iteration

(0, 0) (1, 1) (2, 4) . . .

For a polynomial invariant p = 0, synthesise a partially correct linear loop.

Anton Varonka Program loops, algebraically 9th October 2023
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Loops and invariants

Loop Invariant
invariant generation
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Loop Invariant
invariant generation
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Loops and invariants

Loop Invariant
invariant generation

(x , y) := (0, 0)
while y < N do

x := x + 2y + 1
y := y + 1

y = x2

holds before and after
each iteration

(0, 0) (1, 1) (2, 4) . . .

For a loop L, generate all polynomial invariants p = 0 which L preserves.

Anton Varonka Program loops, algebraically 9th October 2023



Loops and invariants

Loop Invariant
loop synthesis

(x , y) := (0, 0)
while y < N do

x := x + 2y + 1
y := y + 1

y = x2

holds before and after
each iteration

(0, 0) (1, 1) (2, 4) . . .

For a polynomial invariant p = 0, synthesise a partially correct linear loop.

Anton Varonka Program loops, algebraically 9th October 2023
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Previously...

A long time ago
in a galaxy far, far away

≈ 2 years
Brno (aka. Wien-Nord)

...I got PhD from Masaryk University.

Static verification of software

• forward and backward symbolic execution

• k-induction, invariant generation, ...

• dependency analysis, program slicing
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At ISTA



Runtime Verification

Observing a system as it is running and formally verifying properties of the run.

System

ϕ

Monitor
true
false
?

Q1: How to generate
efficient monitors?

Q2: How to (efficiently)
trace events?
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VAMOS

VAMOS is a runtime monitoring framework

• written in C, C++, Python, and Rust

Team:

• M., Tom Henzinger, Stefanie M. Lei, Fabian Muehlboeck
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VAMOS

Goals of VAMOS are:

• provide basic building blocks for implementations of monitors
• tracing events and transmitting them to monitors,
• events and streams pre-processing and transformations

• support connecting heterogeneous event sources to different monitors
(with best-effort and black-box monitoring in mind)

• focus on scenarios with multiple parallel streams of events
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Project #2:
Monitoring hyperproperties



Hyperproperties

Properties that relate multiple execution traces.

For each trace that contains event A, there exists a different trace with A
on the same position.
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Monitoring hyperproperties

Setup:

• new traces are announced anytime on runtime

• new events come incrementally to traces

We work with:

• Multi-trace prefix transducers

• Hypernode automata and logic

Team:

• M., Ana Costa, Tom Henzinger, Oldouz Neysari
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The presentation raises more questions than answers?

Good – come and talk to me :)
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CirVer
Verifying algebraic circuits

Thomas Hader, Daniela Kaufmann

October, 9 2023



zk-SNARKs

zk-Proof: Prover P ensures verifier V that a valid computation of code is known.

zero-knowledge proof code
written in DSL

component unit[k - 1];

for (var i = 1; i < k; i++){
unit[i - 1].a <== a[i] * b[i];

Algebraic circuit
(e.g. R1CS, PLONKish)

set of polynomial constraints in Fp

x1 = x12x8 − 2x5x8 + x3
x7 = x1x5

generated to code for
prover P and verifier V

com
piler

optim
izer



Verifying algebraic circuits

Verification target: Circuit must not be under-constraint (otherwise incorrect
execution traces are accepted).

Algebraic Circuit
(e.g. R1CS, PLONKish)

set of polynomial constraints in Fp

x1 = x12x8 − 2x5x8 + x3
x7 = x1x5

SMT solver for Fp (e.g. [1])

multiple queries to general purpose solver
solver re-detects circuit structure

CirVer
generates GB from Circuit
circuit structure is directly utilized
significantly cheaper GB generation
GB can be used for multiple specifications

SM
T
en
co
din

g

circuit

[1] Hader, Kaufmann, Kovács. SMT Solving over Finite Field Arithmetic. LPAR 2023
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