Boolean modelling of biological processes

Samuel Pastva

samuel.pastva@ist.ac.at

The sequencing boom

- Modern single-cell sequencing enables observations orders of magnitude more precise than 10-20 years ago.
- Activity of thousands of genes across thousands of cells, tissues and mutations.
- How do we rigorously use this data to understand complex biological systems?

Mechanistic modelling

- Mechanistic models:
- Grounded in explainable biochemical principles.
- "Black box" model learns to answer questions.
- "Mechanistic" model helps to design new questions.
- Boolean networks:
- Simple, massively parallel programs emulating gene regulation.

Where are we going?

- Synthesis/inference:
- What models fit observed data?
- Bonus round: what does it even mean to fit data?
- Selection/identifiability:
- Which candidate model is the "best"?
- How to design experiments to improve the candidate set?
- Can we learn something from an incomplete model?
- BDDs / ASP / SMT / SAT
- As always... scalability...

Formal Methods for Safe and Trustworthy Probabilistic Systems

Djordje Zikelic

Institute of Science and
Technology
Austria

Applications

Applications

Formal verification

Formal controller synthesis

$x=0$
while $x \geq 0$ do
$r_{1}:=\operatorname{Uniform}([-1,0.5])$
$x:=x+r_{1}$
if $x \geq 100$ then

$$
\bar{r}_{2}:=\operatorname{Uniform}([-1,2])
$$

$$
x:=x+r_{2}
$$

Probabilistic programs

Neurosymbolic methods

Distributional properties

Why neurosymbolic methods, why formal?

Safety-critical applications require formal correctness guarantees

Learner-verifier framework [1,2,3]

Neural policy and neural certificate

Learner-verifier framework

What are learnable certificates for stochastic systems?

How to learn these certificates?

How to formally verify these certificates?

Learner-verifier framework

Results*

Neural martingales as formal certificates

Learner-verifier loop for neural policies + martingales

(reachability [AAAl'22], reach-avoidance [AAAl'23], stability [ATVA'23], compositional reasoning [NeurIPS'23], Bayesian neural networks [NeurIPS'21])

[^0]
Learner-verifier framework

Results*

Neural martingales as formal certificates
Learner-verifier loop for neural policies + martingales
(reachability [AAAl'22], reach-avoidance [AAAl'23], stability [ATVA'23], compositional reasoning [NeurIPS'23], Bayesian neural networks [NeurlPS'21])

What's next?

Richer specifications
Compositional reasoning about systems, neural policies and neural certificates
Scaling to larger systems

[^1]
Custom Theory Reasoning Clemens Eisenhofer

TU Wien, Austria

爵

SPy"oDe

SMT solvers

Satisfiability Modulo Theories (SMT) solvers support reasoning in (fragments of) first-order logic:

SMT solvers

Satisfiability Modulo Theories (SMT) solvers support reasoning in (fragments of) first-order logic:

- SMT-solvers can reason natively in a wide range of theories: Integers, arrays, strings, bit-vectors, ADTs, ...

SMT solvers

Satisfiability Modulo Theories (SMT) solvers support reasoning in (fragments of) first-order logic:

- SMT-solvers can reason natively in a wide range of theories: Integers, arrays, strings, bit-vectors, ADTs, ...
\Rightarrow Essential component in automated software/hardware/protocol verification.

SMT solvers

Satisfiability Modulo Theories (SMT) solvers support reasoning in (fragments of) first-order logic:

```
int32 i1, i2;
assume(i1 > 0);
arr[0] = 1;
arr[i1 + i2] = 2;
assert(arr[0] = 1);
```


SMT solvers

Satisfiability Modulo Theories (SMT) solvers support reasoning in (fragments of) first-order logic:

$$
\begin{aligned}
& \text { int32 i1, i2; } \\
& \cdots \quad i 1>0 \wedge \\
& \begin{array}{l}
\text { assume }(i 1>0) ; \quad \Rightarrow \quad \operatorname{arr}_{1}=\operatorname{store}\left(\operatorname{arr}_{0}, 0,1\right) \wedge \\
\operatorname{arr}[0]=1 ;
\end{array} \\
& \operatorname{arr}[i 1+i 2]=2 ; \quad \operatorname{arr}_{2}=\operatorname{store}\left(\operatorname{arr}_{1}, i 1+i 2,2\right) \wedge \\
& \text { assert }(\operatorname{arr}[0]=1) ; \quad \operatorname{select}\left(\operatorname{arr}_{2}, 0\right) \neq 1
\end{aligned}
$$

SMT solvers

Satisfiability Modulo Theories (SMT) solvers support reasoning in (fragments of) first-order logic:

$$
\begin{aligned}
& \text { int32 i1, i2; } \\
& \begin{array}{lcc}
& \ldots \wedge & \quad \operatorname{array}_{0} \mapsto\langle 0, \ldots, 0\rangle, \\
\ldots & >0 \wedge &
\end{array} \\
& \text { assume }(i 1>0) ; \quad \Rightarrow \quad \operatorname{arr}_{1}=\operatorname{store}\left(\operatorname{arr}_{0}, 0,1\right) \wedge \quad \Rightarrow \quad \operatorname{array}_{1} \mapsto\langle 1, \ldots, 0\rangle \text {, } \\
& \operatorname{arr}[0]=1 ; \quad \Rightarrow \operatorname{arr}_{1}=\operatorname{store}\left(\operatorname{arr}_{0}, 0,1\right) \\
& \operatorname{arr}[i 1+i 2]=2 \text {; } \\
& a r_{2}=\operatorname{store}\left(a r r_{1}, i 1+i 2,2\right) \wedge \\
& \text { select }\left(\operatorname{arr}_{2}, 0\right) \neq 1 \\
& \begin{array}{l}
\text { array }_{1} \mapsto\langle 1, \ldots, 0\rangle, \\
\text { array }_{2} \mapsto\langle 2, \ldots, 0\rangle,
\end{array} \\
& i 1 \mapsto 2^{31}, \\
& \text { i2 } \mapsto 2^{31}
\end{aligned}
$$

SMT solvers

Satisfiability Modulo Theories (SMT) solvers support reasoning in (fragments of) first-order logic:

$$
\begin{aligned}
& \text { int32 i1, i2; } \\
& \begin{array}{lrl}
\text { int32 } 11, i 2 ; & \ldots \wedge \\
\ldots & i 1>0 \wedge & \operatorname{array}_{0} \mapsto\langle 0, \ldots, 0\rangle, \\
& &
\end{array} \\
& \begin{aligned}
\cdots \\
\text { assume }(i 1>0) ;
\end{aligned} \quad \Rightarrow \quad \operatorname{arr}_{1}=\operatorname{store}\left(\operatorname{arr}_{0}, 0,1\right) \wedge \quad \Rightarrow \quad \operatorname{array}_{1} \mapsto\langle 1, \ldots, 0\rangle, \\
& \operatorname{arr}[0]=1 \text {; } \\
& \operatorname{arr}[\mathrm{i} 1+\mathrm{i} 2]=2 \text {; } \\
& \text { assert }(\operatorname{arr}[0]=1) ; \quad \operatorname{select}\left(\operatorname{arr}_{2}, 0\right) \neq 1 \\
& \text { array }_{2} \mapsto\langle 2, \ldots, 0\rangle \text {, } \\
& i 1 \mapsto 2^{31}, \\
& i 2 \mapsto 2^{31}
\end{aligned}
$$

The solver has efficient procedures for dealing with $>,+$, select, and store.

My Current Research

- Custom theory reasoning ("user-propagation") in Z3

My Current Research

- Custom theory reasoning ("user-propagation") in Z3

My Current Research

- Custom theory reasoning ("user-propagation") in Z3


```
fixed(ast, value) :
    queenY = queenToY(ast)
    queenX = value
    if (queen X }\geq\mathrm{ board)
        conflict({ ast })
        return
    foreach (fixed in alreadyFixedVars)
        otherX = model[fixed]
        otherY = queenToY(fixed)
        if (|queenX - otherX| = |queenY - otherY \ )
                        conflict({ ast, fixed })
    else if (queenX = otherX)
    conflict({ ast, fixed })
```


My Current Research

- Custom theory reasoning ("user-propagation") in Z3
- Solving combinatorial problems by oracles, lazy axioms, efficient custom theories
- Improve reasoning time
- Less memory required

My Current Research

- Custom theory reasoning ("user-propagation") in Z3
- Solving combinatorial problems by oracles, lazy axioms, efficient custom theories
- Improve reasoning time
- Less memory required
- Non-classical logics in SMT
- e.g., $T \sqsubseteq\left(\diamond_{r} . a<1 \wedge \diamond_{r} . a>1\right)(\mathcal{A L C})$

My Current Research

- Custom theory reasoning ("user-propagation") in Z3
- Solving combinatorial problems by oracles, lazy axioms, efficient custom theories
- Improve reasoning time
- Less memory required
- Non-classical logics in SMT
- e.g., $\top \sqsubseteq\left(\diamond_{r} . a<1 \wedge \diamond_{r} . a>1\right)(\mathcal{A L C})$
- Theorem proving via weird calculi in SMT
- e.g., $\{\{P(x)\} ;\{P(a), \neg P(x) \vee P(f(x)), \neg P(f(f(a)))\}, \emptyset\}$ (Connection Calculus)

My Current Research

- Custom theory reasoning ("user-propagation") in Z3
- Solving combinatorial problems by oracles, lazy axioms, efficient custom theories
- Improve reasoning time
- Less memory required
- Non-classical logics in SMT
- e.g., $\top \sqsubseteq\left(\diamond_{r} . a<1 \wedge \diamond_{r} . a>1\right)(\mathcal{A L C})$
- Theorem proving via weird calculi in SMT
- e.g., $\{\{P(x)\} ;\{P(a), \neg P(x) \vee P(f(x)), \neg P(f(f(a)))\}, \emptyset\}$ (Connection Calculus)
- New (Nielson) string solver as theory extension
- "a" $++x=x++" b "$

My Current Research

- Custom theory reasoning ("user-propagation") in Z3
- Solving combinatorial problems by oracles, lazy axioms, efficient custom theories
- Improve reasoning time
- Less memory required
- Non-classical logics in SMT
- e.g., $T \sqsubseteq\left(\diamond_{r} . a<1 \wedge \diamond_{r} . a>1\right)(\mathcal{A L C})$
- Theorem proving via weird calculi in SMT
- e.g., $\{\{P(x)\} ;\{P(a), \neg P(x) \vee P(f(x)), \neg P(f(f(a)))\}, \emptyset\}$ (Connection Calculus)
- New (Nielson) string solver as theory extension
- "a" $++x=x++" b "$

Applying SMT Propagation to "Everything"

SPy:oDe

Interface Theory for Security and Privacy

Ana Oliveira da Costa

Institute of Science and Technology Austria (ISTA)

Designing Secure Systems

We need to consider:

- Multiple architectural layers.
- Sub-systems developed by different teams.
- Heterogeneous components.
- Interaction between cyber and physical components.

Designing Secure Systems

We need to consider:

- Multiple architectural layers.
- Sub-systems developed by different teams.
- Heterogeneous components.
- Interaction between cyber and physical components.
\Downarrow
Contract-based design.

Interface Theory

Luca de Alfaro and Thomas A. Henzinger. Interface theories for component-based design. (2001)
$\langle\mathbb{I}, \preceq, \sim, \otimes\rangle$ where \preceq is refinement, \sim is compatibility, and \otimes is composition.

Interface Theory

Luca de Alfaro and Thomas A. Henzinger. Interface theories for component-based design. (2001)
$\langle\mathbb{I}, \preceq, \sim, \otimes\rangle$ where \preceq is refinement, \sim is compatibility, and \otimes is composition.

Composition (\otimes)

Interface Theory

$\langle\mathbb{I}, \preceq, \sim, \otimes\rangle$ where \preceq is refinement, \sim is compatibility, and \otimes is composition.

Composition (\otimes)

Refinement (\preceq)

Interface Theory

Incremental Design: Composition only requires knowledge about the parts being composed.

Interface Theory

Incremental Design: Composition only requires knowledge about the parts being composed.

Interface Theory

Incremental Design: Composition only requires knowledge about the parts being composed. If $F \sim G$ and $F \otimes G \sim H$, then $G \sim H$ and $F \sim G \otimes H$.

Interface Theory

Incremental Design: Composition only requires knowledge about the parts being composed. If $F \sim G$ and $F \otimes G \sim H$, then $G \sim H$ and $F \sim G \otimes H$.

Independent Implementability: Independent refinement of subsystems.

Interface Theory

Incremental Design: Composition only requires knowledge about the parts being composed.
If $F \sim G$ and $F \otimes G \sim H$, then $G \sim H$ and $F \sim G \otimes H$.

Independent Implementability: Independent refinement of subsystems.
If $F \sim G$ and $F^{\prime} \preceq F$, then $F^{\prime} \sim G$ and $F^{\prime} \otimes G \preceq F \otimes G$.

Information-flow Interfaces

Ezio Bartocci, Thomas Ferrère, Thomas Henzinger, Dejan Nickovic, D., and Ana O. da Costa.
Information-flow interfaces. (2022)
Security policies abstracted as information-flow constraints.

Information-flow Interfaces

Ezio Bartocci, Thomas Ferrère, Thomas Henzinger, Dejan Nickovic, D., and Ana O. da Costa. Information-flow interfaces. (2022)

Security policies abstracted as information-flow constraints.
Interfaces specify:
(0) disjoint sets of input and output variables, $X \cap Y=\emptyset$;

Information-flow Interfaces

Ezio Bartocci, Thomas Ferrère, Thomas Henzinger, Dejan Nickovic, D., and Ana O. da Costa. Information-flow interfaces. (2022)

Security policies abstracted as information-flow constraints.
Interfaces specify:
(1) disjoint sets of input and output variables, $X \cap Y=\emptyset$;
(0) no-flow constraints on the environment as assumptions;

Information-flow Interfaces

Security policies abstracted as information-flow constraints.
Interfaces specify:
(1) disjoint sets of input and output variables, $X \cap Y=\emptyset$;
(0) no-flow constraints on the environment as assumptions;
(0) no-flow requirements on implementations as open-guarantees;

Information-flow Interfaces

Security policies abstracted as information-flow constraints.
Interfaces specify:
(0) disjoint sets of input and output variables, $X \cap Y=\emptyset$;
(0) no-flow constraints on the environment as assumptions;
(0) no-flow requirements on implementations as open-guarantees;
(no-flow requirements on the closed-system as closed-guarantees.

What is next?

(0) Explore formalisms to specify what is an information flow.

- Dive into real-world use cases.
(1) Explore the limits of interface theory for the design of secure systems.

Finding counterexamples to $\forall \exists$-safety hyperproperties

... and other forays into incorrectness

Tobias Nießen

TU Wien
October 9, 2023

$\forall \exists$-safety hyperproperties

Definition (informal, intuition)
"For each trace τ there exists a trace τ^{\prime} such that τ and τ^{\prime} do not interact badly."
$\forall \exists$-safety hyperproperties

Definition (informal, intuition)
"For each trace τ there exists a trace τ^{\prime} such that τ and τ^{\prime} do not interact badly."

Example (Refinement)

$$
\forall^{\mathbb{P}} \tau \exists^{\mathrm{Q}} \tau^{\prime}\left(\text { in }_{\tau}=\text { in }_{\tau^{\prime}} \wedge \text { out }_{\tau}=\text { out }_{\tau^{\prime}}\right)
$$

$\forall \exists$-safety hyperproperties

Definition (informal, intuition)

"For each trace τ there exists a trace τ^{\prime} such that τ and τ^{\prime} do not interact badly."

Example (Refinement)

$$
\forall^{\mathbb{P}} \tau \exists^{\mathbb{Q}} \tau^{\prime}\left(\text { in }_{\tau}=i n_{\tau^{\prime}} \wedge \text { out }_{\tau}=\text { out }_{\tau^{\prime}}\right)
$$

Hint: $\underbrace{y:=x * \operatorname{random}(\mathbb{N})}_{\mathrm{P}}$ refines $\underbrace{y:=x * \operatorname{random}(\mathbb{Z})}_{\mathrm{Q}}$, but not vice versa

Verification of $\forall \exists$ hyperproperties - unsurprisingly difficult

Undecidability of trace properties
+ quantification over multiple traces
+ quantifier alternation

Verification of $\forall \exists$ hyperproperties - unsurprisingly difficult

Undecidability of trace properties

+ quantification over multiple traces
+ quantifier alternation

	Loops	Infinite states	Complete	Counterexamples
Strategy-based approaches	\checkmark	\checkmark	\boldsymbol{x}	\boldsymbol{x}
Automata-based approaches	\checkmark	x	\checkmark	\boldsymbol{x}
Relational Hoare-style logic	x	\checkmark	\checkmark	\checkmark

$\forall \exists$-safety hyperproperties - our approach to finding counterexamples

Goal: find model for negation of $\forall \exists$-safety property
$\forall \exists$-safety hyperproperties - our approach to finding counterexamples

Goal: find model for negation of $\forall \exists$-safety property

Combine underapproximate methods to find counterexamples

- symbolic execution for universally quantified traces
- bounded model checking for existentially quantified traces
- lift both algorithms to an SMT solver for infinite variable domains
- typically requires many iterations to exclude spurious refutations

$\forall \exists$-safety hyperproperties - our approach to finding counterexamples

Goal: find model for negation of $\forall \exists$-safety property

Combine underapproximate methods to find counterexamples

- symbolic execution for universally quantified traces
- bounded model checking for existentially quantified traces
- lift both algorithms to an SMT solver for infinite variable domains
- typically requires many iterations to exclude spurious refutations

Does this terminate? Sometimes. Maybe. It depends...

Runtime Monitoring Neural Certificates

Emily Yu

Klosterneuburg, Austria
October 9, 2023

Dynamical Systems

$$
f: \mathcal{X} \times \mathcal{U} \rightarrow \mathcal{X}
$$

[forbes.com]

Learning Certificate Functions

Requirements

\diamond Stability: Lynapunov function $V: \mathcal{X} \rightarrow \mathbb{R}$
\longrightarrow certifies stability around a fixed point
\diamond Safety: Barrier function $h: \mathcal{X} \rightarrow \mathbb{R}$
\longrightarrow certifies invariance of a region

Verifying Certificates faces challenges
\diamond Generalization error bounds: [Liu+'20, Boffi+'21, ChangGao'21]
\diamond Lipschitz arguments : [Richards+'18, BobitiLazar'18]
\diamond Learner-verifier: [Chang+'19, Peruffo+'21, Chatterjee+'23] etc

Monitoring Certificate Functions

- Validating certificate at runtime

References I

Chang, Ya-Chien, and Sicun Gao. "Stabilizing neural control using self-learned almost lyapunov critics." 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021.
圊
Boffi, Nicholas, et al. "Learning stability certificates from data." Conference on Robot Learning. PMLR, 2021.Liu, Shenyu, Daniel Liberzon, and Vadim Zharnitsky. "Almost Lyapunov functions for nonlinear systems." Automatica 113 (2020): 108758.
擂
Richards, Spencer M., Felix Berkenkamp, and Andreas Krause. "The lyapunov neural network: Adaptive stability certification for safe learning of dynamical systems." Conference on Robot Learning. PMLR, 2018.

Bobiti, Ruxandra, and Mircea Lazar. "Automated-sampling-based stability verification and DOA estimation for nonlinear systems." IEEE Transactions on Automatic Control 63.11 (2018): 3659-3674.

T
Chatterjee, Krishnendu, et al. "A Learner-Verifier Framework for Neural Network Controllers and Certificates of Stochastic Systems." International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Cham: Springer Nature Switzerland, 2023.

References II

擂
Chang，Ya－Chien，Nima Roohi，and Sicun Gao．＂Neural lyapunov control．＂ Advances in neural information processing systems 32 （2019）．
星
Peruffo，Andrea，Daniele Ahmed，and Alessandro Abate．＂Automated and formal synthesis of neural barrier certificates for dynamical models．＂ International conference on tools and algorithms for the construction and analysis of systems．Cham：Springer International Publishing， 2021.
［国 https：／／www．forbes．com／sites／forbestechcouncil／2022／07／27／ai－from－ drug－discovery－to－robotics／？sh＝37eef0c53d7f

Credits

Diagrams have been designed using images from Flaticon.com.

2023 - Klosterneuburg Austria

Udi Boker ${ }^{\dagger}$
Thomas A. Henzinger \ddagger
Nicolas Mazzocchi ${ }^{\ddagger}$
N. Ege Saraç ${ }^{\ddagger}$
\dagger Reichman University, Israel
\ddagger Institute of Science and Technology, Austria

Quantitative

Safety and

Liveness of

Quantitative
Automata

Boolean Properties

Definition

A Boolean property $\Phi \subseteq \Sigma^{\omega}$ or equivalently $\Phi: \Sigma^{\omega} \rightarrow\{0,1\}$, is a language
$\frac{\text { Safety }}{\text { Requests Not Duplicated }}$

Boolean Properties

Definition

A Boolean property $\Phi \subseteq \Sigma^{\omega}$ or equivalently $\Phi: \Sigma^{\omega} \rightarrow\{0,1\}$, is a language
$\frac{\text { Safety }}{\text { Requests Not Duplicated }}$

```
Theorem: Decomposition of Boolean properties \({ }^{1}\)
All property \(\Phi\) can be expressed by:
        \(\Phi=\Phi_{\text {safe }} \cap \Phi_{\text {live }}\)
    - \(\Phi_{\text {safe }}\) is safe
    - \(\Phi_{\text {live }}\) is live
```

${ }^{1}$ Alpern, Schneider. Defining liveness. 1985

Boolean Properties

Definition

A Boolean property $\Phi \subseteq \Sigma^{\omega}$ or equivalently $\Phi: \Sigma^{\omega} \rightarrow\{0,1\}$, is a language
$\frac{\text { Safety }}{\text { Requests Not Duplicated }}$

Safety closure
smaller enlargement
to get a safe language

Liveness

All Requests Granted

Theorem: Decomposition of Boolean properties ${ }^{1}$
All property Φ can be expressed by:

$$
\Phi=\Phi_{\text {safe }} \cap \Phi_{\text {live }}
$$

- $\Phi_{\text {safe }}$ is safe
- $\Phi_{\text {live }}$ is live
${ }^{1}$ Alpern, Schneider. Defining liveness. 1985

Quantitative Properties

Definition ${ }^{2}$

A quantitative property $\Phi: \Sigma^{\omega} \rightarrow \mathbb{D}$ is a quantitative language where \mathbb{D} is a complete lattice

$\frac{\text { Safety }}{\text { Minimal Response Time }}$

Liveness
Average Response Time

[^2]
Quantitative Properties

Definition

A quantitative property $\Phi: \Sigma^{\omega} \rightarrow \mathbb{D}$ is a quantitative language where \mathbb{D} is a complete lattice
$\frac{\text { Safety }}{\text { Minimal Response Time }}$
Safety closure
the least safety property that bounds the original from above

Liveness

Average Response Time

Theorem: Decomposition of quantitative properties ${ }^{3}$

All property Φ can be expressed by:

$$
\Phi(w)=\min \left\{\Phi_{\text {safe }}(w), \Phi_{\text {live }}(w)\right\} \text { for all } w \in \Sigma^{\omega}
$$

- $\Phi_{\text {safe }}$ is safe
- $\Phi_{\text {live }}$ is live
${ }^{3}$ Henzinger, Mazzocchi, Saraç. Quantitative Safety and Liveness. 2023

Quantitative Automata

Value functions
Inf, Sup, LimInf, LimSup
LimInfAvg, LimSupAvg, DSum

Quantitative Automata

Value functions
Inf, Sup, LimInf, LimSup
LimInfAvg, LimSupAvg, DSum

Non-determinism

$\mathcal{A}(w)=\sup \{$ values of w 's runs $\}$

Quantitative Automata

Word: $w=a_{1} a_{2} \ldots \quad$ Run value: $x=f\left(x_{1} x_{2} \ldots\right)$

Theorem ${ }^{4}$

The set $\left\{w \in \Sigma^{\omega} \mid \mathcal{A}(w)=T\right\}$ is dense if and only if the automaton \mathcal{A} is live

Value functions

Inf, Sup, LimInf, LimSup
LimInfAvg, LimSupAvg, DSum

Non-determinism

$\mathcal{A}(w)=\sup \{$ values of w 's runs $\}$
${ }^{4}$ Boker, Henzinger, Mazzocchi, Saraç. Safety and Liveness of Quantitative Automata. 2023

Quantitative Automata

Word: $w=a_{1} a_{2} \ldots \quad$ Run value: $x=f\left(x_{1} x_{2} \ldots\right)$

Theorem ${ }^{4}$

The set $\left\{w \in \Sigma^{\omega} \mid \mathcal{A}(w)=T\right\}$ is dense if and only if the automaton \mathcal{A} is live

Theorem ${ }^{4}$

An automaton is live if and only if its safety closure is the constant T

Value functions

Inf, Sup, LimInf, LimSup
LimInfAvg, LimSupAvg, DSum

Non-determinism

$\mathcal{A}(w)=\sup \{$ values of w 's runs $\}$
${ }^{4}$ Boker, Henzinger, Mazzocchi, Saraç. Safety and Liveness of Quantitative Automata. 2023

Take away message

	Inf	Sup, LimInf, LimSup	LimInfAvg, LimSupAvg	DSum
Is it safe? i.e., $\mathcal{A}^{\star}=\mathcal{A}$	$O(1)$	PSPACE-complete	ExPSpACE PSPACE-hard	$O(1)$
Is it live? i.e., $\mathcal{A}^{\star}=\top$	PSPACE-complete			
Decomposition $\mathcal{A}=\min \mathcal{A}_{\text {safe }}$ $\mathcal{A}_{\text {live }}$	$O(1)$	PTime if deterministic	Open	$O(1)$

\mathcal{A}^{\star} is the Safety closure of \mathcal{A}

Take away message

	Inf	Sup, LimInf, LimSup	LimInfAvg, LimSupAvg	DSum
Is it safe? i.e., $\mathcal{A}^{\star}=\mathcal{A}$	$O(1)$	PSPACE-complete	ExPSpACE PSPACE-hard	$O(1)$
Is it live? i.e., $\mathcal{A}^{\star}=\top$	PSpACE-complete			
Decomposition $\mathcal{A}=\min \mathcal{A}_{\text {safe }} \mathcal{A}_{\text {live }}$	$O(1)$	PTime if deterministic	Open	$O(1)$

\mathcal{A}^{\star} is the Safety closure of \mathcal{A}
T. A. Henzinger, N. Mazzocchi and
N. E. Saraç

Quantitative Safety and Liveness
In FOSSACS proceedings 2023

2 U. Boker, T. A. Henzinger, N. Mazzocchi and N. E. Saraç
Safety and Liveness of Quantitative Automata
In CONCUR proceedings 2023

Thank you

Solving Parity and Rabin Games
K.S. Ahejeranin

Henzinger group

Party Games

Steven
Auping Δ

Rabin Games

Steven \square
Audrey \triangle

Does Steven win from a given vertex?

Parity Games
UP $\bigcap_{\infty-U P}$
Quai - Folymomed time

Rabin Games
$N P_{\text {-complete }}$

Does Steven win from a given vertex?

(n,k) Universal Tree

There are small (n, h)-universal trees: $O\left(n^{\log h}\right)$
(n, h, s)-Strahler Universal Tree

There are (n, h, s)-strahler Universal Tres of size $O\left((h / s)^{\beta} \cdot \operatorname{poly}(n)\right)$

Colourful Universal Tres

There are C-colourful trees of size $(\mathbb{C}!)^{1+\varepsilon} \cdot$ poly (n)

PolySAT
 A Word-level Solver for Large Bitvectors

Jakob Rath
TU Wien
Joint work with Clemens Eisenhofer, Daniela Kaufmann, Nikolaj Bjørner, Laura Kovács

PolySAT: a Word-level Solver for Large Bitvectors

Bitvectors?

1. Sequence of bits, e.g., 01011
2. Fixed-width machine integers, e.g., uint32_t, int64_t
3. Modular arithmetic: $\mathbb{Z} / 2^{k} \mathbb{Z}$

PolySAT: a Word-level Solver for Large Bitvectors

Bitvectors?

1. Sequence of bits, e.g., 01011
2. Fixed-width machine integers, e.g., uint32_t, int64_t
3. Modular arithmetic: $\mathbb{Z} / 2^{k} \mathbb{Z}$

Examples:

- $2 x^{2} y+z=3$
- $x+3 \leq x+y$
- $\neg \Omega^{*}(x, y), \quad z=x \& y, \quad x[3: 0]=0, \quad \ldots$
- Negation, disjunction of constraints

PolySAT: a Word-level Solver for Large Bitvectors

Bitvectors?

1. Sequence of bits, e.g., 01011
2. Fixed-width machine integers, e.g., uint32_t, int64_t
3. Modular arithmetic: $\mathbb{Z} / 2^{k} \mathbb{Z}$

Examples:

- $2 x^{2} y+z=3$
- $x+3 \leq x+y$
- $\neg \Omega^{*}(x, y), \quad z=x \& y, \quad x[3: 0]=0, \quad \ldots$
- Negation, disjunction of constraints

Existing approaches: bit-blasting, translation to integers

Example

$x+3 \leq x+y \bmod 2^{3}$

- For $x=0: \quad 3 \leq y \quad \Longleftrightarrow y \in\{3,4,5,6,7\}$
- For $x=2: \quad 5 \leq 2+y \Longleftrightarrow y \in\{3,4,5\}$

Example

$x+3 \leq x+y \bmod 2^{3}$

- For $x=0: \quad 3 \leq y \quad \Longleftrightarrow y \in\{3,4,5,6,7\}$
- For $x=2: \quad 5 \leq 2+y \Longleftrightarrow y \in\{3,4,5\}$
- $x+3 \leq-y+2 \bmod 2^{3}$

$$
\begin{aligned}
& p \leq q \\
& p \leq p-q-1 \\
& q-p \leq q \\
& q-p \leq-p-1 \\
& -q-1 \leq-p-1 \\
& -q-1 \leq p-q-1
\end{aligned}
$$

Example

$x+3 \leq x+y \bmod 2^{3}$

- For $x=0: \quad 3 \leq y \quad \Longleftrightarrow y \in\{3,4,5,6,7\}$
- For $x=2: \quad 5 \leq 2+y \Longleftrightarrow y \in\{3,4,5\}$
- $x+3 \leq-y+2 \bmod 2^{3}$

$$
\begin{aligned}
& p \leq q \\
& p \leq p-q-1 \\
& q-p \leq q \\
& q-p \leq-p-1 \\
& -q-1 \leq-p-1 \\
& -q-1 \leq p-q-1
\end{aligned}
$$

PolySAT is a theory solver for bitvector arithmetic:

- Search for a model of the input formula
- Incrementally assign bitvector variables (e.g., $x:=2$)
- Propagate feasible sets, e.g.:

$$
x:=2 \wedge x+3 \leq x+y \Longrightarrow y \in\{3,4,5\} \quad\left(\bmod 2^{3}\right)
$$

- Add lemmas on demand, e.g.:

$$
p x<q x \wedge \neg \Omega^{*}(p, x) \Longrightarrow p<q
$$

From loops, to program synthesis, and beyond!

Daneshvar Amrollahi

TU Wien
Joint work with P. Hozzová, L. Kovács, M. Moosbrugger, etc.

October 9, 2023

Loops

A major challenge in formal verification

Loops

A major challenge in formal verification

- Loop invariants
- Capture loop behavior as a logical formula: $x+3 y^{2}=2 z^{3}$
- Used in program verification
- Automated invariant generation techniques based on symbolic computation, algebraic recurrence equations, static analysis, etc.

Loops

A major challenge in formal verification

- Loop invariants
- Capture loop behavior as a logical formula: $x+3 y^{2}=2 z^{3}$
- Used in program verification
- Automated invariant generation techniques based on symbolic computation, algebraic recurrence equations, static analysis, etc.
- Loop synthesis
- Synthesizing a program (loop) given a specification
- Program correctness by construction
- Specification: a polynomial loop invariant
- Applications in compiler optimization: single path loops, linear updates

Program Synthesis

- A framework based on saturation-based theorem proving.
- Specification: $\forall \bar{x} . \exists y . F[\bar{x}, y]$
- Framework output:
- A program with if-then-else statements
- A proof that the spec. holds (using Vampire)

Beyond

Something around SMT with Clark Barrett at Stanford

AUTOSARD

Matthias Hetzenberger

supervised by Florian Zuleger

AUTOSARD

Automated Sublinear Amortised Resource Analysis of Data Structures

Matthias Hetzenberger

supervised by Florian Zuleger

- Goal: develop automated reasoning techniques w.r.t. amortised cost analysis of (probabilistic) functional data structures
- Goal: develop automated reasoning techniques w.r.t. amortised cost analysis of (probabilistic) functional data structures
- Extend pilot project ATLAS based on type-and-effect system and potential functions [Leutgeb, Moser, and Zuleger 2022]
- Goal: develop automated reasoning techniques w.r.t. amortised cost analysis of (probabilistic) functional data structures
- Extend pilot project ATLAS based on type-and-effect system and potential functions [Leutgeb, Moser, and Zuleger 2022]
- Current focus Zip Trees [Tarjan, Levy, and Timmel 2021]

国 Leutgeb, Lorenz, Georg Moser, and Florian Zuleger (2022). "Automated Expected Amortised Cost Analysis of Probabilistic Data Structures". In: Computer Aided Verification. Springer International Publishing, pp. 70-91. Doi: 10.1007/978-3-031-13188-2_4. URL: https://doi.org/10.1007/978-3-031-13188-2_4.

这 Tarjan, Robert E., Caleb Levy, and Stephen Timmel (Oct. 2021). "Zip Trees". In: ACM Transactions on Algorithms 17.4, pp. 1-12. DOI: 10.1145/3476830. URL: https://doi.org/10.1145/3476830.

IC3

Islam Hamada

TU Wien

for $($ syte

2023

TECHNISCHE
UNIVERSITÄT
WIEN
Vienna University of Technology

Overview

- Prominent model checking algorithm.

Overview

- Prominent model checking algorithm.
- builds multiple successive overapproximations of reachable states simultaneously.

Overview

- Prominent model checking algorithm.
- builds multiple successive overapproximations of reachable states simultaneously.
- looks for a proof of correctness by finding an inductive invariant that is safe, otherwise gives a counter example.

Overview

- Prominent model checking algorithm.
- builds multiple successive overapproximations of reachable states simultaneously.
- looks for a proof of correctness by finding an inductive invariant that is safe, otherwise gives a counter example.
- Building the invariant is guided by CTIs.

$$
R_{i} \wedge T \wedge \neg P^{\prime}
$$

R_{k-1}
R_{k}

Aspects To Investigate

- The used heuristic for generalizing clauses

Aspects To Investigate

- The used heuristic for generalizing clauses
- Save and reuse CTIs

Aspects To Investigate

- The used heuristic for generalizing clauses
- Save and reuse CTIs
- Avoiding duplicate clauses.

Aspects To Investigate

- The used heuristic for generalizing clauses
- Save and reuse CTIs
- Avoiding duplicate clauses.
- Global clauses

Aspects To Investigate

- The used heuristic for generalizing clauses
- Save and reuse CTIs
- Avoiding duplicate clauses.
- Global clauses
- Generalizing the CTIs further

Incremental IC3

- Two related transition relations, T and T_{c} such that $T_{c} \subseteq T$.

Incremental IC3

- Two related transition relations, T and T_{c} such that $T_{c} \subseteq T$.
- Reusing clauses directly

Incremental IC3

- Two related transition relations, T and T_{c} such that $T_{c} \subseteq T$.
- Reusing clauses directly
- Reusing CTIs and lifting them further

Incremental IC3

- Two related transition relations, T and T_{c} such that $T_{c} \subseteq T$.
- Reusing clauses directly
- Reusing CTIs and lifting them further
- Reusing the invariant

Learn to be Dynamical

Mahyar Karimi

ISTA

October 9, 2023

All about Dynamical Systems

- Jumping particle:

All about Dynamical Systems

- Jumping particle:

- Transitions: $x_{t+1}=f\left(x_{t}\right)$.

All about Dynamical Systems

- Jumping particle:

- Transitions: $x_{t+1}=f\left(x_{t}\right)$.
- Can we reach T?

Lyapunov Functions

Can we have a function V that

1. is non-negative: $V(x) \geq 0$
2. decreases with every transition: $V(x)>V(f(x))$?

Lyapunov Functions

Can we have a function V that

1. is non-negative: $V(x) \geq 0$
2. decreases with every transition: $V(x)>V(f(x))$?

- For nonlinear systems, V is not easy to find.

Lyapunov Functions

Can we have a function V that

1. is non-negative: $V(x) \geq 0$
2. decreases with every transition: $V(x)>V(f(x))$?

- For nonlinear systems, V is not easy to find.
- SMT for finding V ? Precise, but slow.

Lyapunov Functions

Can we have a function V that

1. is non-negative: $V(x) \geq 0$
2. decreases with every transition: $V(x)>V(f(x))$?

- For nonlinear systems, V is not easy to find.
- SMT for finding V ? Precise, but slow.
- Guided search for V ?

Neural Lyapunov Functions

Let's use a neural network to find V !

- Learning $V \Longleftarrow$ Loss Function + Gradient Descent
- Loss should capture V.

Neural Lyapunov Functions

Let's use a neural network to find V !

- Learning $V \Longleftarrow$ Loss Function + Gradient Descent
- Loss should capture V.

Catch! No guarantee for generalization.

Neural Lyapunov Functions

Let's use a neural network to find V !

- Learning $V \Longleftarrow$ Loss Function + Gradient Descent
- Loss should capture V.

Catch! No guarantee for generalization. Good news; we can use SMT solving.

Is V All We Can Learn?

Is V All We Can Learn?

No.

Is V All We Can Learn?

No.

- Replacing f with a neural network.

Is V All We Can Learn?

No.

- Replacing f with a neural network. Benefit; NN instead of mathematical object.

Is V All We Can Learn?

No.

- Replacing f with a neural network.

Benefit; NN instead of mathematical object.
Catch! 2 generalization queries instead of 1 .

Is V All We Can Learn?

No.

- Replacing f with a neural network.

Benefit; NN instead of mathematical object.
Catch! 2 generalization queries instead of 1.

- More can be learned: partitioning X, error bounds,.. .

Separation Logic for Program Analysis

Florian Sextl
2023-10-09

Central Ideas

Goals

Central Ideas

Goals

- Verify memory safety even in unsafe programs (e.g. C/unsafe in Rust)

Central Ideas

Goals

- Verify memory safety even in unsafe programs (e.g. C/unsafe in Rust)
- Make it usable (fully automatic, acceptable runtime, strong guarantees)

Central Ideas

Goals

- Verify memory safety even in unsafe programs (e.g. C/unsafe in Rust)
- Make it usable (fully automatic, acceptable runtime, strong guarantees)

Approach

Central Ideas

Goals

- Verify memory safety even in unsafe programs (e.g. C/unsafe in Rust)
- Make it usable (fully automatic, acceptable runtime, strong guarantees)

Approach

- Based on strong but manageable separation logic

Central Ideas

Goals

- Verify memory safety even in unsafe programs (e.g. C/unsafe in Rust)
- Make it usable (fully automatic, acceptable runtime, strong guarantees)

Approach

- Based on strong but manageable separation logic
- Symbolic execution with bi-abduction

Previously: Sound Bi-abduction-based Shape Analysis

o

Program Synthesis via \{Saturation, SMT solving\}

Petra Hozzová

supervised by Laura Kovács,
and working with Andrei Voronkov, Nikolaj Bjørner, Daneshvar Amrollahi, ...

Synthesis in saturation

Synthesize a program computing y for any \bar{x} such that $F(\bar{x}, y)$ holds using a saturation-based prover proving $\forall \bar{x} . \exists y . F(\bar{x}, y)$ using induction.

Synthesis in saturation

Synthesis in saturation

term, possibly using if - then-else, recursively defined functions, and only containing computable symbols

Synthesize a program computing y for any \bar{x} such that $F(\bar{x}, y)$ holds using a saturation-based prover proving $\forall \bar{x} . \exists y . F(\bar{x}, y)$ using induction.

Synthesis in saturation

term, possibly using if - then-else, recursively defined functions, and only containing computable symbols

Synthesize a program computing y for any \bar{x} such that $F(\bar{x}, y)$ holds using a saturation-based prover proving $\forall \bar{x} \cdot \exists y . F(\bar{x}, y)$ using induction.
using answer literals,
supporting derivation of clauses $C \vee$ ans (r) where C is computable, expressing "if $\neg C$, then r is the program"

Synthesis with SMT-solving

Synthesize a program computing the function f such that $F(\bar{x}, f)$ holds using quantifier elimination games for $\exists f . \forall \bar{x} . F(\bar{x}, f)$.*

Synthesis with SMT-solving

first-order formula, f 's arguments are terms dependent on \bar{x}

Synthesize a program computing the function f such that $F(\bar{x}, f)$ holds using quantifier elimination games for $\exists f . \forall \bar{x} . F(\bar{x}, f)$.*

Synthesis with SMT-solving

term, possibly using if-then-else, and only containing computable symbols
first-order formula, f 's arguments are terms dependent on \bar{x}

Synthesize a program computing the function f such that $F(\bar{x}, f)$ holds using quantifier elimination games for $\exists f . \forall \bar{x} . F(\bar{x}, f)$.*

Synthesis with SMT-solving

term, possibly using if-then-else, and only containing computable symbols
first-order formula, f 's arguments are terms dependent on \bar{x}

Synthesize a program computing the function f such that $F(\bar{x}, f)$ holds using quantifier elimination games for $\exists f . \forall \bar{x} . F(\bar{x}, f)$.*

Using an interplay of two procedures, that in turns find interpretations of f and \bar{x}. If the final interpretation satisfies the formula, we learn a case in the program. Otherwise we either learn a lemma or conclude the synthesis.

Quantum Information Markov Decision Processes for Robust Quantum Programs Synthesis

Quantum Algorithms Workflow

QUANTUM STATE
IN A WELL DEFINED STATE

A PROBABILITY
DISTRIBUTION OVER CLASSICAL STATES

Challenges

- Quantum Computers are very noisy
- The no-cloning theorem
- We cannot directly observe quantum states
- Quantum algorithms are hard to engineer

Input

Output

$T \longrightarrow$

Partially Observable Markov Decision Processes (POMDP)

A POMDP is a tuple $\left\langle S, A, \mathcal{O}, \Delta, \gamma_{1}\right\rangle$ where:

- S is a set of states
- A is a set of actions
- \mathcal{O} is a set of observations
- $\Delta: S \times A \times S \rightarrow[0,1]$ is a probabilistic transition function
- $\gamma_{1}: S \rightarrow \mathcal{O}$

Quantum Information Markov Decision Processes (QIMDP)

A QIMDP is a tuple $\left\langle M, I, C, \rightarrow_{H}, \gamma_{2}\right\rangle$ where:

- M is a set of hybrid states
- I is a set of instructions
- C is a set of classical states
- $\rightarrow_{H}: M \times I \times M \rightarrow[0,1]$ is a probabilistic transition function
- $\gamma_{2}: M \rightarrow C$

CALGSAT

Combining Computer Algebra with SAT Solving

Daniela Kaufmann

Computer ALGebra

Polynomial System $P \subseteq \mathbb{K}[X]$
$\left\{x^{2}+y=0,-4 y+x z=0, y z+\overline{3}=0\right\}$

Computer Algebra System

System with all solutions
$\left\{z^{3}-48=0,16 y+z^{2}=0,4 x+z=0\right\}$

Model

Reasoning
Engine
Solution

SAT Solving

Propositional Logic Formula

$(x \vee y) \wedge(\bar{x} \vee z) \wedge(x \vee \bar{z}) \wedge(\bar{y} \vee \bar{z})$

SAT Solver

Single assignments

$$
\{x=\top, y=\perp, z=\top\}
$$

- Over 50 years of research \rightarrow "Killer application"
- bit-level models
- dedicated heuristics and solving engines
- single assignments

Circuit Verification

Computer algebra + SAT solves 384/384

Computer algebra solves 254/384

SAT solves 0/384
[1] Kaufmann, Biere, Kauers. Verifying Large Multipliers by Combining SAT and Computer Algebra. FMCAD 2019: 28-36

Computer ALGebra

$P \subseteq \mathbb{Z}[X], X \in \mathbb{B}$

Pseudo-Boolean Integer Polynomials

- Hardware verification

Variables represent signals in circuits Integer coefficients for word-level specification

$$
\begin{aligned}
& P \subseteq \mathbb{Z} / 2^{w} \mathbb{Z}[X], X \in \mathbb{Z} / 2^{w} \mathbb{Z}[X] \\
& P \subseteq \mathbb{F}_{q}[X], X \in \mathbb{F}_{q}
\end{aligned}
$$

Polynomials in finite domains

- Verification of cryptosystems

Variables and coefficients are used to represent states of the system

Theory Reasoning in Saturation Theorem Proving

Johannes Schoisswohl

Theory Reasoning in Saturation Theorem Proving

Johannes Schoisswohl

Theory Reasoning in Saturation Theorem Proving

Johannes Schoisswohl

Theory Reasoning in Saturation Theorem Proving

- Saturation Algorithms

Theory Reasoning in Saturation Theorem Proving

- Saturation Algorithms
- Assume $\neg \phi$

Theory Reasoning in Saturation Theorem Proving

- Saturation Algorithms
- Assume $\neg \phi$
- Apply a set of rules exhaustively

Theory Reasoning in Saturation Theorem Proving

- Saturation Algorithms
- Assume $\neg \phi$
- Apply a set of rules exhaustively
- Until contradiction found or no rules applicable

Theory Reasoning in Saturation Theorem Proving

- Saturation Algorithms
- Assume $\neg \phi$
- Apply a set of rules exhaustively
- Until contradiction found or no rules applicable
- Mainly for Uninterpreted Symbols

Theory Reasoning in Saturation Theorem Proving

- Saturation Algorithms
- Assume $\neg \phi$
- Apply a set of rules exhaustively
- Until contradiction found or no rules applicable
- Mainly for Uninterpreted Symbols
- Theory Reasoning

Theory Reasoning in Saturation Theorem Proving

- Saturation Algorithms
- Assume $\neg \phi$
- Apply a set of rules exhaustively
- Until contradiction found or no rules applicable
- Mainly for Uninterpreted Symbols
- Theory Reasoning
- Symbols have predefined meaning (e.g.,$+<$)

Theory Reasoning in Saturation Theorem Proving

- Saturation Algorithms
- Assume $\neg \phi$
- Apply a set of rules exhaustively
- Until contradiction found or no rules applicable
- Mainly for Uninterpreted Symbols
- Theory Reasoning
- Symbols have predefined meaning (e.g.,$+<$)
- Naively handled with axioms (e.g. $x<y \wedge y<z \rightarrow x<z$)

Theory Reasoning in Saturation Theorem Proving

- Saturation Algorithms
- Assume $\neg \phi$
- Apply a set of rules exhaustively
- Until contradiction found or no rules applicable
- Mainly for Uninterpreted Symbols
- Theory Reasoning
- Symbols have predefined meaning (e.g.,$+<$)
- Naively handled with axioms (e.g. $x<y \wedge y<z \rightarrow x<z$)
- Problem: Very explosive!

Theory Reasoning in Saturation Theorem Proving

- Saturation Algorithms
- Assume $\neg \phi$
- Apply a set of rules exhaustively
- Until contradiction found or no rules applicable
- Mainly for Uninterpreted Symbols
- Theory Reasoning
- Symbols have predefined meaning (e.g.,$+<$)
- Naively handled with axioms (e.g. $x<y \wedge y<z \rightarrow x<z$)
- Problem: Very explosive!

$$
x_{0}<x_{1} \wedge x_{1}<x_{2} \rightarrow x_{0}<x_{2}
$$

Theory Reasoning in Saturation Theorem Proving

- Saturation Algorithms
- Assume $\neg \phi$
- Apply a set of rules exhaustively
- Until contradiction found or no rules applicable
- Mainly for Uninterpreted Symbols
- Theory Reasoning
- Symbols have predefined meaning (e.g.,$+<$)
- Naively handled with axioms (e.g. $x<y \wedge y<z \rightarrow x<z$)
- Problem: Very explosive!

$$
\begin{aligned}
& x_{0}<x_{1} \wedge x_{1}<x_{2} \rightarrow x_{0}<x_{2} \\
& x_{0}<x_{1} \wedge x_{1}<x_{2} \wedge x_{2}<x_{3} \rightarrow x_{0}<x_{3}
\end{aligned}
$$

Theory Reasoning in Saturation Theorem Proving

- Saturation Algorithms
- Assume $\neg \phi$
- Apply a set of rules exhaustively
- Until contradiction found or no rules applicable
- Mainly for Uninterpreted Symbols
- Theory Reasoning
- Symbols have predefined meaning (e.g.,$+<$)
- Naively handled with axioms (e.g. $x<y \wedge y<z \rightarrow x<z$)
- Problem: Very explosive!

$$
\begin{gathered}
x_{0}<x_{1} \wedge x_{1}<x_{2} \rightarrow x_{0}<x_{2} \\
x_{0}<x_{1} \wedge x_{1}<x_{2} \wedge x_{2}<x_{3} \rightarrow x_{0}<x_{3} \\
x_{0}<x_{1} \wedge x_{1}<x_{2} \wedge x_{2}<x_{3} \wedge x_{3}<x_{4} \rightarrow x_{0}<x_{4}
\end{gathered}
$$

Theory Reasoning in Saturation Theorem Proving

- Saturation Algorithms
- Assume $\neg \phi$
- Apply a set of rules exhaustively
- Until contradiction found or no rules applicable
- Mainly for Uninterpreted Symbols
- Theory Reasoning
- Symbols have predefined meaning (e.g.,$+<$)
- Naively handled with axioms (e.g. $x<y \wedge y<z \rightarrow x<z$)
- Problem: Very explosive!

$$
\frac{x_{0}<x_{1} \quad x_{1}<x_{2}}{x_{0}<x_{2}}
$$

Theory Reasoning in Saturation Theorem Proving

Background Theories $\mathcal{T}+$ Quantifiers

Theory Reasoning in Saturation Theorem Proving

Background Theories $\mathcal{T}+$ Quantifiers

Theory Reasoning in Saturation Theorem Proving

Background Theories $\mathcal{T}+$ Quantifiers

- Naive approach: Axioms

Theory Reasoning in Saturation Theorem Proving

Background Theories $\mathcal{T}+$ Quantifiers

- Naive approach: Axioms
- Better approach: Special Inference Systems

Theory Reasoning in Saturation Theorem Proving

Background Theories $\mathcal{T}+$ Quantifiers

- Naive approach: Axioms
- Better approach: Special Inference Systems
- ALASCA (done)
- Linear Real Arithmetic + Uninterpreted Functions
- Beats State of the Art

Theory Reasoning in Saturation Theorem Proving

Background Theories $\mathcal{T}+$ Quantifiers

- Naive approach: Axioms
- Better approach: Special Inference Systems
- ALASCA (done)
- Linear Real Arithmetic + Uninterpreted Functions
- Beats State of the Art
- ALASCAI (in progress)
- ALASCA + Floor Function
- Allows for integer reasoning

Bidding Games taking Charge
 ...in theory and in practice

Kaushik Mallik

Henzinger Group

Bid-Tac-Toe

Bid-Tac-Toe

Bid-Tac-Toe

Bid-Tac-Toe

Bid-Tac-Toe

Bid-Tac-Toe

Bid-Tac-Toe

Bid-Tac-Toe

Bid-Tac-Toe

Bid-Tac-Toe

Bid-Tac-Toe

Bid-Tac-Toe

[Lazarus et al. '99, Develin \& Payne '08, Meir et al. '18, Avni et al. '19,...]

Bid-Tac-Toe

Does the threshold exist?
[Lazarus et al. '99, Develin \& Payne '08, Meir et al. '18, Avni et al. '19,...]

Bid-Tac-Toe

Does the threshold exist?
Verify if the threshold <0.5.
[Lazarus et al. '99, Develin \& Payne '08, Meir et al. '18, Avni et al. '19,...]

Bid-Tac-Toe

Does the threshold exist?
Verify if the threshold <0.5.
Characterize the winning strategies.

Two Ongoing Projects

Bidding games with charging

- State-dependent monetary incentives Ex.: \boldsymbol{X} earns 50 EUR when captures 2 corners

Two Ongoing Projects

Bidding games with charging

- State-dependent monetary incentives Ex.: \boldsymbol{X} earns 50 EUR when \mathbf{O} captures 2 corners

	Reach	Safe	Büchi	CoBüchi	Rabin	Streett
Threshold	\checkmark	\checkmark	\checkmark	\checkmark		
Verification*	coNP	NP	Π_{2}^{P}	Σ_{2}^{P}	NP- hard	coNPhard
Winning strategies	\checkmark	\checkmark	\checkmark	\checkmark		

- joint work with Guy Avni, Ehsan, and Tom

Two Ongoing Projects

Bidding games with charging

- State-dependent monetary incentives Ex.: X earns 50 EUR when captures 2 corners

Auction-based scheduling

- joint work with Guy Avni and Suman Sadhukhan

Two Ongoing Projects

Bidding games with charging

- State-dependent monetary incentives Ex.: \mathbf{X} earns 50 EUR when captures 2 corners

	Reach	Safe	Büchi	CoBüchi	Rabin	Streett
Threshold	\checkmark	\checkmark	\checkmark	\checkmark		
Verification*	coNP	NP	Π_{2}^{P}	Σ_{2}^{P}	NPhard	coNPhard
Winning strategies	\checkmark	\checkmark	\checkmark	\checkmark		

*for Richman bidding

- joint work with Guy Avni, Ehsan, and Tom

Auction-based scheduling

- joint work with Guy Avni and Suman Sadhukhan

Automated Analysis of Probabilistic Loops

Marcel Moosbrugger
ISTA - October 2023

$$
\begin{aligned}
& \text { stop }:=0 \\
& y:=1 \\
& x:=0
\end{aligned}
$$

while stop == 0: stop := flip_coin() y := 2 y $x:=x+1$

ㅍuplnformatics

```
stop := 0
y := 1
x := 0
while stop == 0:
stop := flip coin()
y := 2y
x := x + 1
```

Probabilistic programs/loops as universal models.

MY PHD PROJECT

```
stop := 0
y := 1
X := 0
while stop == 0:
    stop := flip_coin()
    y := 2y
    x := x + 1
```

Develop PL \& verification techniques to analyze probabilistic loops

Termination Analysis
[ESOP 2021, FM 2021, FMSD 2022]
Invariant Synthesis
[OOPSLA 2022, SAS 2022, FMSD 2023]
Sensitivity Analysis
[iFM 2023]
Predicting movement of robots under uncertainty
[QEST 2022, TOMACS 2023]

```
Focus on: automation, exact results
    (no sampling)
```

```
stop := 0
y := 1
x := 0
while stop == 0:
    stop := flip_coin()
    y := 2y
    x := x + 1
```


罚 Informatics

Solving Stochastic Games

 ReliablyMaximilian Weininger

ISTA Seminar
09.10.2023

Software has bugs

Software has bugs

FORMAL VERIFICATION

Formal verification

Formal verification with special effects

- Controllers
- Explanations
- Certificates

Ground orderedness in superposition

Márton Hajdu

October 4, 2023

The superposition calculus

- The superposition calculus is the state-of-the-art approach for first-order equational logic

The superposition calculus

- The superposition calculus is the state-of-the-art approach for first-order equational logic

$$
\frac{s[u] \bowtie t \vee C \quad I \simeq r \vee D}{(s[r] \bowtie t \vee C \vee D) \theta}
$$

where $\theta=m g u(u, I), u$ not a variable, $r \theta \nsucceq I \theta, t \theta \nsucceq s[u] \theta$ and $C \theta \nsucceq s[u] \bowtie t \theta$

The superposition calculus

- The superposition calculus is the state-of-the-art approach for first-order equational logic

$$
\frac{s[u] \bowtie t \vee C \quad I \simeq r \vee D}{(s[r] \bowtie t \vee C \vee D) \theta}
$$

where $\theta=m g u(u, I), u$ not a variable, $r \theta \nsucceq I \theta, t \theta \nsucceq s[u] \theta$ and $C \theta \nsucceq s[u] \bowtie t \theta$

- Strong restrictions on the inferences and redundancy elimination make it efficient

The superposition calculus

- The superposition calculus is the state-of-the-art approach for first-order equational logic

$$
\frac{s[u] \bowtie t \vee C \quad I \simeq r \vee D}{(s[r] \bowtie t \vee C \vee D) \theta}
$$

where $\theta=m g u(u, I), u$ not a variable, $r \theta \nsucceq I \theta, t \theta \nsucceq s[u] \theta$ and $C \theta \nsucceq s[u] \bowtie t \theta$

- Strong restrictions on the inferences and redundancy elimination make it efficient
- It can also be adapted to arithmetic, induction, HOL, etc.

The superposition calculus

- The superposition calculus is the state-of-the-art approach for first-order equational logic

$$
\frac{s[u] \bowtie t \vee C \quad I \simeq r \vee D}{(s[r] \bowtie t \vee C \vee D) \theta}
$$

where $\theta=m g u(u, I), u$ not a variable, $r \theta \nsucceq I \theta, t \theta \nsucceq s[u] \theta$ and $C \theta \nsucceq s[u] \bowtie t \theta$

- Strong restrictions on the inferences and redundancy elimination make it efficient
- It can also be adapted to arithmetic, induction, HOL, etc.

The superposition calculus

- The superposition calculus is the state-of-the-art approach for first-order equational logic

$$
\frac{s[u] \bowtie t \vee C \quad I \simeq r \vee D}{(s[r] \bowtie t \vee C \vee D) \theta}
$$

where $\theta=m g u(u, l), u$ not a variable, $r \theta \nsucceq I \theta, t \theta \nsucceq s[u] \theta$ and $C \theta \nsucceq s[u] \bowtie t \theta$

- Strong restrictions on the inferences and redundancy elimination make it efficient
- It can also be adapted to arithmetic, induction, HOL, etc.

Example

Given $f>a>b>c$

$$
\frac{P(f(f(a, x), c)) \quad f(f(y, b), z) \simeq f(y, f(b, z))}{P(f(a, f(b, c))))} \theta=\left\{\begin{array}{c}
x \mapsto b, \\
y \mapsto a, \\
z \mapsto c
\end{array}\right\}
$$

The orderedness redundancy criteria

Given $f>a>b>c$ and clause $f(x, y) \simeq f(y, x)$, this inference is redundant:

$$
\frac{P(f(f(a, x), c)) \quad f(f(y, b), z) \simeq f(y, f(b, z))}{P(f(a, f(b, c))))} \theta=\left\{\begin{array}{c}
x \mapsto b, \\
y \mapsto a, \\
z \mapsto c
\end{array}\right\}
$$

The orderedness redundancy criteria

Given $f>a>b>c$ and clause $f(x, y) \simeq f(y, x)$ ，this inference is redundant：

The orderedness redundancy criteria

Given $f>a>b>c$ and clause $f(x, y) \simeq f(y, x)$, this inference is redundant:

Orderedness is a generalization of compositeness from completion-based theorem proving.

Ground orderedness

Given clauses $\{f(x, y) \simeq f(y, x), f(x, x) \simeq x\}$, consider the inference:

$$
\frac{Q(f(f(x, y), z), f(y, x)) \quad f(f(x, y), z) \simeq f(x, f(y, z))}{Q(f(x, f(y, z)), f(y, x))}
$$

Ground orderedness

Given clauses $\{f(x, y) \simeq f(y, x), f(x, x) \simeq x\}$, consider the inference:

Ground orderedness

Given clauses $\{f(x, y) \simeq f(y, x), f(x, x) \simeq x\}$, consider the inference:

Ground orderedness

Given clauses $\{f(x, y) \simeq f(y, x), f(x, x) \simeq x\}$, consider the inference:

The inference is redundant w.r.t. ground orderedness!

Ground orderedness

Given clauses $\{f(x, y) \simeq f(y, x), f(x, x) \simeq x\}$, consider the inference:

The inference is redundant w.r.t. ground orderedness!
Both orderedness and ground orderedness are currently being implemented in Vampire

Shorter, more usable proofs in SAT and beyond

Adrián Rebola-Pardo

Vienna University of Technology
Johannes Kepler University

IST Austria

October 9th, 2023

Wait, wasn't that a solved problem?

DRAT proofs have weird semantics

Wait, wasn't that a solved problem?

DRAT proofs have weird semantics
can derive clauses not implied by the premises

Wait, wasn't that a solved problem?

DRAT proofs have weird semantics
 can derive clauses not implied by the premises

mutation
semantics

Wait, wasn't that a solved problem?

DRAT proofs have weird semantics
can derive clauses not implied by the premises

new SAT proof
systems

mutation
semantics

Wait, wasn't that a solved problem?

DRAT proofs have weird semantics
can derive clauses not implied by the premises

	clearer semantics
new SAT proof	easier to generate
systems	shorter proofs
	smaller unsat cores

mutation
semantics

Wait, wasn't that a solved problem?

DRAT proofs have weird semantics
can derive clauses not implied by the premises
clearer semantics
can we extract interpolants? easier to generate new SAT proof systems shorter proofs
smaller unsat cores
mutation
semantics

Wait, wasn't that a solved problem?

DRAT proofs have weird semantics
can derive clauses not implied by the premises

| | clearer semantics |
| :--- | :---: | :---: |
| can we extract interpolants? easier to generate | |
| new SAT proof | shorter proofs |
| systems | smaller unsat cores |
| mutation | can we unify QBF proof systems? |
| semantics | extension to |
| | QBF solving |

Wait, wasn't that a solved problem?

DRAT proofs have weird semantics
can derive clauses not implied by the premises

| | clearer semantics
 can we extract interpolants? easier to generate
 new SAT proof
 systems
 shorter proofs |
| :---: | :---: | :---: |
| mutation | smaller unsat cores |
| semantics | can we unify QBF proof systems? |
| extension to | |
| QBF solving | |
| can we uniformly sample? | |
| extension to | |
| model counting | |

Recognizing an Owl•Bear in the Forest Regular Languages of Tree-Width Bounded Graphs

Mark Chimes

October 4, 2023

Finite alphabet \mathbf{A} of terminal symbols e.g. $\{a, b, c, \ldots, z\}$

Regular languages

- Regular Expression
- Automaton
- Generated by Regular Grammar
- Definable:

Monadic Second-Order Logic

- Recognizable: Inverse image under homomorphism into a finite monoid

Words

Words form a monoid $\left\langle\Sigma^{*}, \epsilon, \cdot\right\rangle$

$$
\text { owl } \cdot \text { bear }=\text { owlbear }
$$

Finite alphabet \mathbf{A} of terminal symbols e.g. $\{a, b, c, \ldots, z\}$

Words

Words form a monoid $\left\langle\Sigma^{*}, \epsilon, \cdot\right\rangle$

Graphs - Generalize Words

Label edges with symbols in \mathbb{A}

- Need to know how to combine two graphs
- Vertices are not ordered, but finitely many are numbered
- Graph operations combine graphs along numbers
Graphs form a Multi-Sorted Magma - generalizes Monoid.

$$
\text { owl } \cdot \text { bear }=\text { owlbear }
$$

$$
=
$$

Families of graphs (Languages) with bounded tree-width

Regular languages of Graphs

- Regular Expression
- Automaton
- Generated by Regular Grammar
- Definable:

Monadic Second-Order Logic with counting

- Recognizable:

Inverse image under homomorphism into a locally-finite multi-sorted Magma

Graph Magma

Stability in Matrix Games

${ }^{2}$ CEREMADE, CNRS, Université Paris Dauphine, PSL Research Institute

Main idea

Classical settings. Matrix games and Linear Programming (LP). Classical question. Stability:

How do our objects of interest change upon perturbations?
Observables. Solutions and value of the problems.

How do solutions and value change upon perturbations?

Matrix Games

$$
i\left(\begin{array}{ll}
& \\
& m_{i, j}
\end{array}\right)
$$

$\operatorname{val} M:=\max _{p \in \Delta[m]} \min _{q \in \Delta[n]} p^{t} M q$.

$$
M(\varepsilon)=M_{0}+M_{1} \varepsilon
$$

Derivative of the value function [Mills56]

Define

$$
D \operatorname{val} M\left(0^{+}\right):=\lim _{\varepsilon \rightarrow 0^{+}} \frac{\operatorname{val} M(\varepsilon)-\operatorname{val} M(0)}{\varepsilon}
$$

Results.

(1) Characterization of $\operatorname{Dval} M\left(0^{+}\right)$.
(2) (Poly-time) algorithm for computing it.

Theorem ([Mills56])

Given $M(\varepsilon)=M_{0}+M_{1} \varepsilon$,

$$
D \operatorname{val} M\left(0^{+}\right)=\operatorname{val}_{P\left(M_{0}\right) \times Q\left(M_{0}\right)} M_{1}
$$

Our framework

Polynomial matrix games. Matrix games where payoff entries are given by polynomials.

$$
M(\varepsilon)=M_{0}+M_{1} \varepsilon+\ldots+M_{K} \varepsilon^{K}
$$

Definition (Value-positivity problem)

$\exists \varepsilon_{0}>0$ such that $\forall \varepsilon \in\left[0, \varepsilon_{0}\right] \quad \operatorname{val} M(\varepsilon) \geq \operatorname{val} M(0)$.

Definition (Uniform value-positivity problem)
$\exists p_{0} \in \Delta[m] \quad \exists \varepsilon_{0}>0 \quad \forall \varepsilon \in\left[0, \varepsilon_{0}\right] \quad \operatorname{val}\left(M(\varepsilon) ; p_{0}\right) \geq \operatorname{val} M(0)$.
Definition (Functional form problem)
Return the maps $\operatorname{val} M(\cdot)$ and $p^{*}(\cdot)$, for $\varepsilon \in\left[0, \varepsilon_{0}\right]$.

Polynomial matrix game

Consider $\varepsilon>0$.

$$
M(\varepsilon)=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)+\left(\begin{array}{cc}
1 & -3 \\
0 & 2
\end{array}\right) \varepsilon
$$

The optimal strategy is given by, for $\varepsilon<1 / 2$,

$$
p_{\varepsilon}^{*}=\left(\frac{1+\varepsilon}{2+3 \varepsilon}, \frac{1+2 \varepsilon}{2+3 \varepsilon}\right)^{t}
$$

Therefore,

$$
\operatorname{val} M(\varepsilon)=\frac{\varepsilon^{2}}{2+3 \varepsilon}
$$

Polynomial matrix game, negative direction

Consider $\varepsilon>0$.

$$
M(\varepsilon)=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)+\left(\begin{array}{cc}
-1 & 3 \\
0 & -2
\end{array}\right) \varepsilon
$$

The optimal strategy is given by, for $\varepsilon<2 / 3$,

$$
p_{\varepsilon}^{*}=\left(\frac{1-\varepsilon}{2-3 \varepsilon}, \frac{1-2 \varepsilon}{2-3 \varepsilon}\right)^{t}
$$

Therefore,

$$
\operatorname{val} M(\varepsilon)=\frac{\varepsilon^{2}}{2-3 \varepsilon}
$$

Statistical Monitoring of Stochastic Systems
 (with focus on Algorithmic Fairness)

$$
f: \Sigma^{*} \rightarrow \mathbb{R}
$$

somefunction

$$
\vec{X}:=\left(X_{t}\right)_{t>0}
$$

a stochastic process

$$
t \in \mathbb{N}^{+}
$$

at any point in time

$$
\vec{x}_{t}:=x_{1}, \ldots, x_{t}
$$

observea realisation

$$
\mathbb{E}\left(f\left(\vec{X}_{t}\right) \mid \vec{x}_{I}\right)
$$

want to compute

Example.

Too many coins.
X_{3}
X_{2}
X_{1}

Is this process "fair"
 Many different definitions.

$\mathbb{P}(\mathrm{H})-\mathbb{P}(\mathrm{T})$

How fair is it. . .
 .. at timet?

$$
x_{3}=T
$$

$$
x_{2}=H
$$

$$
x_{1}=H
$$

How fair is it...
 .. at this very moment?

The model could be...

...too big.
...wrong.
...hidden.
...mistrusted.

But maybe

you have some...

$\mathbb{P} \in \mathscr{P}$
assumptions

$$
\hat{E}_{f}\left(\vec{x}_{t}\right)
$$

you estimate

The Big Picture.
 What is the general setting?

$\vec{X}-x_{t+3} x_{t+2} x_{t+1} x_{t} x_{t-1} x_{t-2} \ldots$

$\underline{\mathbb{E}\left(f(\vec{X}) \mid \vec{x}_{I}\right) \in \mathscr{A}\left(\overrightarrow{x_{t}}\right) \text { with probability } 1-\delta}$

Previous Work.

 A quick overview.
System
 MCs

Property

$$
\mathbb{P}(r \mid q)
$$

System

some POMCs

Property

$$
\mathbb{E}\left(f\left(X_{t: t+n}\right)\right)
$$

Property $\quad \mathbb{E}\left(f\left(X_{t}\right) \mid \vec{x}_{t-1}\right)$

Summary.
 What arewe doing?

Interested in monitoring "distributional" properties, e.g. conditional expectation, of stochastic processes.

Leverage tools from non-asymptotic statistics to provide valid guarantees for each time step.

We focused on monitoring Algorithmic Fairness, but those techniques have wide applicability.

> Use statistical monitoring to breach the gap between the model and reality.

On THE DECIDABILITY OF ALGEBRAIC LOOP ANALYSIS

Anton Varonka

2nd year PhD student supervised by Laura Kovács

In my PhD project, I explore the decidability landscape of
verification-motivated problems, in particular, those that underlie automated reasoning about program loops.

- code fragment \longleftrightarrow behaviours
- model loops as dynamical systems, i.e., algebraic program analysis
- linear vs not

What is it all about

A simple loop acting on a vector \boldsymbol{x} of integer variables.

Program correctness:

- Termination on all branches
- Finding good invariants

Loops and invariants

Loops and invariants

$$
\begin{aligned}
& (x, y):=(0,0) \\
& \text { while } y<N \text { do } \\
& \qquad x:=x+2 y+1 \\
& y:=y+1
\end{aligned}
$$

$$
y=x^{2}
$$

Loops and invariants

$$
\begin{aligned}
& (x, y):=(0,0) \\
& \text { while } y<N \text { do } \\
& \qquad x:=x+2 y+1 \\
& y:=y+1
\end{aligned}
$$

$$
(0,0)
$$

Loops and invariants

$$
\begin{aligned}
& (x, y):=(0,0) \\
& \text { while } y<N \text { do } \\
& x:=x+2 y+1 \\
& y:=y+1
\end{aligned}
$$

$$
(0,0) \quad(1,1) \quad(2,4) \quad \ldots
$$

Loops and invariants

$$
\begin{aligned}
& (x, y):=(0,0) \\
& \text { while } y<N \text { do } \\
& \qquad x:=x+2 y+1 \\
& y:=y+1
\end{aligned}
$$

$$
(0,0) \quad(1,1) \quad(2,4) \quad \ldots
$$

For a loop \mathcal{L}, generate all polynomial invariants $p=0$ which \mathcal{L} preserves.

Loops And invariants

$$
\begin{aligned}
& (x, y):=(0,0) \\
& \text { while } y<N \text { do } \\
& \qquad x:=x+2 y+1 \\
& y:=y+1
\end{aligned}
$$

$$
(0,0) \quad(1,1) \quad(2,4) \quad \ldots
$$

For a polynomial invariant $p=0$, synthesise a partially correct linear loop.

Vamos!

Presenter: Marek Chalupa

October 9, 2023

Previously

Previously...

$$
\begin{array}{cl}
\text { A long time ago } & \approx 2 \text { years } \\
\text { in a galaxy far, far away } & \text { Brno (aka. Wien-Nord) }
\end{array}
$$

Previously...

> A long time ago in a galaxy far, far away
> ...I got PhD from Masaryk University. ≈ 2 years
Brno (aka. Wien-Nord)

Previously...

> A long time ago in a galaxy far, far away $\begin{aligned} & \text { Brno (aka. Wien-Nord) } \\ & \text { Broars }\end{aligned}$

Static verification of software

- forward and backward symbolic execution
- k-induction, invariant generation, ...
- dependency analysis, program slicing

At ISTA

Runtime Verification

Observing a system as it is running and formally verifying properties of the run.

Runtime Verification

Observing a system as it is running and formally verifying properties of the run.

Runtime Verification

Observing a system as it is running and formally verifying properties of the run.

Project \#1: VamOs

VAMOS

VAMOS is a runtime monitoring framework

- written in C, C++, Python, and Rust

Vamos

VAMOS is a runtime monitoring framework

- written in C, C++, Python, and Rust

Team:

- M., Tom Henzinger, Stefanie M. Lei, Fabian Muehlboeck

Vamos

Goals of Vamos are:

- provide basic building blocks for implementations of monitors
- tracing events and transmitting them to monitors,
- events and streams pre-processing and transformations

Vamos

Goals of Vamos are:

- provide basic building blocks for implementations of monitors
- tracing events and transmitting them to monitors,
- events and streams pre-processing and transformations
- support connecting heterogeneous event sources to different monitors (with best-effort and black-box monitoring in mind)

Vamos

Goals of Vamos are:

- provide basic building blocks for implementations of monitors
- tracing events and transmitting them to monitors,
- events and streams pre-processing and transformations
- support connecting heterogeneous event sources to different monitors (with best-effort and black-box monitoring in mind)
- focus on scenarios with multiple parallel streams of events

Project \#2:
 Monitoring hyperproperties

Hyperproperties

Properties that relate multiple execution traces.

Hyperproperties

Properties that relate multiple execution traces.

For each trace that contains event A, there exists a different trace with A on the same position.

Monitoring hyperproperties

Setup:

- new traces are announced anytime on runtime
- new events come incrementally to traces

Monitoring hyperproperties

Setup:

- new traces are announced anytime on runtime
- new events come incrementally to traces

We work with:

- Multi-trace prefix transducers
- Hypernode automata and logic

Monitoring hyperproperties

Setup:

- new traces are announced anytime on runtime
- new events come incrementally to traces

We work with:

- Multi-trace prefix transducers
- Hypernode automata and logic

Team:

- M., Ana Costa, Tom Henzinger, Oldouz Neysari

That's it

The presentation raises more questions than answers?

That's it

The presentation raises more questions than answers?

Good - come and talk to me :)

CirVer

Verifying algebraic circuits

Thomas Hader, Daniela Kaufmann

October, 92023

zk-SNARKs

zk-Proof: Prover P ensures verifier V that a valid computation of code is known.

```
zero-knowledge proof code
written in DSL
component unit[k - 1];
for (var i = 1; i < k; i++){
    unit[i - 1].a <== a[i] * b[i];
```

```
Algebraic circuit
(e.g. R1CS, PLONKish)
set of polynomial constraints in \(\mathbb{F}_{p}\)
    \(x_{1}=x_{12} x_{8}-2 x_{5} x_{8}+x_{3}\)
    \(x_{7}=x_{1} x_{5}\)
generated to code for
prover P and verifier V
```


Verifying algebraic circuits

Verification target: Circuit must not be under-constraint (otherwise incorrect execution traces are accepted).

Algebraic Circuit (e.g. R1CS, PLONKish)

set of polynomial constraints in \mathbb{F}_{p}
$x_{1}=x_{12} x_{8}-2 x_{5} x_{8}+x_{3}$
$x_{7}=x_{1} x_{5}$

[1] Hader, Kaufmann, Kovács. SMT Solving over Finite Field Arithmetic. LPAR 2023

[^0]: *Joint work with Mathias Lechner, Krish, Tom, Matin Ansaripour, Abhinav Verma

[^1]: *Joint work with Mathias Lechner, Krish, Tom, Matin Ansaripour, Abhinav Verma

[^2]: ${ }^{2}$ Chatterjee, Doyen, Henzinger. Quantitative Languages. 2010

