
Boolean modelling of
biological processes

Samuel Pastva
samuel.pastva@ist.ac.at

The sequencing
boom
• Modern single-cell sequencing

enables observations orders of
magnitude more precise than
10-20 years ago.

• Activity of thousands of genes
across thousands of cells,
tissues and mutations.

• How do we rigorously use this
data to understand complex
biological systems?

Mechanistic
modelling
• Mechanistic models:

• Grounded in explainable
biochemical principles.

• “Black box” model learns to
answer questions.

• “Mechanistic” model helps to
design new questions.

• Boolean networks:
• Simple, massively parallel

programs emulating gene
regulation.

Where are we going?
• Synthesis/inference:

• What models fit observed data?
• Bonus round: what does it even

mean to fit data?

• Selection/identifiability:
• Which candidate model is the

”best”?
• How to design experiments to

improve the candidate set?
• Can we learn something from an

incomplete model?

• BDDs / ASP / SMT / SAT
• As always… scalability…

?

Formal Methods for Safe and Trustworthy
Probabilistic Systems

Djordje Zikelic

2023/2024

Formal verification Formal controller synthesis

Applications

Formal verification Formal controller synthesis

Applications

Probabilistic programs Randomized algorithms

https://www.cambridge.org/core/books/randomized-algorithms/6A3E5CD760B0DDBA3794A100EE2843E8

 
 

Formal verification Formal controller synthesis

Applications

Neurosymbolic methodsProbabilistic programs Distributional propertiesRandomized algorithms

https://www.cambridge.org/core/books/randomized-algorithms/6A3E5CD760B0DDBA3794A100EE2843E8

https://towardsdatascience.com/modeling-traffic-density-of-the-city-of-vienna-c41480c35523?gi=942a7b186562

 

Formal verification Formal controller synthesis

Applications

Probabilistic programs Distributional propertiesRandomized algorithms

Blockchain protocols

(very recent)

Bidding games

on graphs

https://www.cambridge.org/core/books/randomized-algorithms/6A3E5CD760B0DDBA3794A100EE2843E8

https://towardsdatascience.com/modeling-traffic-density-of-the-city-of-vienna-c41480c35523?gi=942a7b186562

https://www.frommers.com/tips/airfare/upgrade-bidding-tips-how-to-game-airline-seat-auctions-so-youll-win 
https://en.wikipedia.org/wiki/Bitcoin

Neurosymbolic methods

Formal verification Formal controller synthesis

Applications

Probabilistic programs Distributional propertiesRandomized algorithms

Blockchain protocols

(very recent)

Bidding games

on graphs

https://www.cambridge.org/core/books/randomized-algorithms/6A3E5CD760B0DDBA3794A100EE2843E8

https://towardsdatascience.com/modeling-traffic-density-of-the-city-of-vienna-c41480c35523?gi=942a7b186562

https://www.frommers.com/tips/airfare/upgrade-bidding-tips-how-to-game-airline-seat-auctions-so-youll-win 
https://en.wikipedia.org/wiki/Bitcoin

Neurosymbolic methods

Why neurosymbolic methods, why formal?

Safety-critical applications require formal correctness guarantees

Learner-verifier framework [1,2,3]

Learner Verifier

Neural policy and neural certificate

[1] Chang, Roohi, Gao. Neural Lyapunov Control. NeurIPS 2019
[2] Ravanbakhsh, Sankaranarayanan. Learning Control Lyapunov Functions from Counterexamples and Demonstrations. Autonomous Robots 2019
[3] Abate, Ahmed, Giacobbe, Peruffo. Formal Synthesis of Lyapunov Neural Networks. IEEE Control Systems Letters 2020

Learner-verifier framework

What are learnable certificates for stochastic systems?

How to learn these certificates?

How to formally verify these certificates?

Learner-verifier framework

 
Neural martingales as formal certificates

 
Learner-verifier loop for neural policies + martingales

(reachability [AAAI’22], reach-avoidance [AAAI’23], stability [ATVA’23], compositional reasoning [NeurIPS’23], Bayesian neural networks [NeurIPS’21])

Results*

*Joint work with Mathias Lechner, Krish, Tom, Matin Ansaripour, Abhinav Verma

Learner-verifier framework

 
Neural martingales as formal certificates

 
Learner-verifier loop for neural policies + martingales

(reachability [AAAI’22], reach-avoidance [AAAI’23], stability [ATVA’23], compositional reasoning [NeurIPS’23], Bayesian neural networks [NeurIPS’21])

Results*

*Joint work with Mathias Lechner, Krish, Tom, Matin Ansaripour, Abhinav Verma

 
Richer specifications

 
Compositional reasoning about systems, neural policies and neural certificates

Scaling to larger systems

What’s next?

Custom Theory Reasoning

Clemens Eisenhofer

TU Wien, Austria

SMT solvers

Satisfiability Modulo Theories (SMT) solvers support reasoning in (fragments of)
first-order logic:

i n t 3 2 i1 , i 2 ;
. . .
assume (i 1 > 0) ;
a r r [0] = 1 ;
a r r [i 1 + i 2] = 2 ;
a s s e r t (a r r [0] = 1) ;

⇒

. . . ∧
i1 > 0 ∧

arr1 = store(arr0, 0, 1) ∧
arr2 = store(arr1, i1 + i2, 2) ∧

select(arr2, 0) ̸= 1

⇒

array0 7→ ⟨0, ..., 0⟩,
array1 7→ ⟨1, ..., 0⟩,
array2 7→ ⟨2, ..., 0⟩,

i1 7→ 231,

i2 7→ 231

The solver has efficient procedures for dealing with >, +, select, and store.

SMT solvers

Satisfiability Modulo Theories (SMT) solvers support reasoning in (fragments of)
first-order logic:

▶ SMT-solvers can reason natively in a wide range of theories: Integers, arrays,
strings, bit-vectors, ADTs, . . .

⇒ Essential component in automated software/hardware/protocol verification.

i n t 3 2 i1 , i 2 ;
. . .
assume (i 1 > 0) ;
a r r [0] = 1 ;
a r r [i 1 + i 2] = 2 ;
a s s e r t (a r r [0] = 1) ;

⇒

. . . ∧
i1 > 0 ∧

arr1 = store(arr0, 0, 1) ∧
arr2 = store(arr1, i1 + i2, 2) ∧

select(arr2, 0) ̸= 1

⇒

array0 7→ ⟨0, ..., 0⟩,
array1 7→ ⟨1, ..., 0⟩,
array2 7→ ⟨2, ..., 0⟩,

i1 7→ 231,

i2 7→ 231

The solver has efficient procedures for dealing with >, +, select, and store.

SMT solvers

Satisfiability Modulo Theories (SMT) solvers support reasoning in (fragments of)
first-order logic:

▶ SMT-solvers can reason natively in a wide range of theories: Integers, arrays,
strings, bit-vectors, ADTs, . . .

⇒ Essential component in automated software/hardware/protocol verification.

i n t 3 2 i1 , i 2 ;
. . .
assume (i 1 > 0) ;
a r r [0] = 1 ;
a r r [i 1 + i 2] = 2 ;
a s s e r t (a r r [0] = 1) ;

⇒

. . . ∧
i1 > 0 ∧

arr1 = store(arr0, 0, 1) ∧
arr2 = store(arr1, i1 + i2, 2) ∧

select(arr2, 0) ̸= 1

⇒

array0 7→ ⟨0, ..., 0⟩,
array1 7→ ⟨1, ..., 0⟩,
array2 7→ ⟨2, ..., 0⟩,

i1 7→ 231,

i2 7→ 231

The solver has efficient procedures for dealing with >, +, select, and store.

SMT solvers

Satisfiability Modulo Theories (SMT) solvers support reasoning in (fragments of)
first-order logic:

i n t 3 2 i1 , i 2 ;
. . .
assume (i 1 > 0) ;
a r r [0] = 1 ;
a r r [i 1 + i 2] = 2 ;
a s s e r t (a r r [0] = 1) ;

⇒

. . . ∧
i1 > 0 ∧

arr1 = store(arr0, 0, 1) ∧
arr2 = store(arr1, i1 + i2, 2) ∧

select(arr2, 0) ̸= 1

⇒

array0 7→ ⟨0, ..., 0⟩,
array1 7→ ⟨1, ..., 0⟩,
array2 7→ ⟨2, ..., 0⟩,

i1 7→ 231,

i2 7→ 231

The solver has efficient procedures for dealing with >, +, select, and store.

SMT solvers

Satisfiability Modulo Theories (SMT) solvers support reasoning in (fragments of)
first-order logic:

i n t 3 2 i1 , i 2 ;
. . .
assume (i 1 > 0) ;
a r r [0] = 1 ;
a r r [i 1 + i 2] = 2 ;
a s s e r t (a r r [0] = 1) ;

⇒

. . . ∧
i1 > 0 ∧

arr1 = store(arr0, 0, 1) ∧
arr2 = store(arr1, i1 + i2, 2) ∧

select(arr2, 0) ̸= 1

⇒

array0 7→ ⟨0, ..., 0⟩,
array1 7→ ⟨1, ..., 0⟩,
array2 7→ ⟨2, ..., 0⟩,

i1 7→ 231,

i2 7→ 231

The solver has efficient procedures for dealing with >, +, select, and store.

SMT solvers

Satisfiability Modulo Theories (SMT) solvers support reasoning in (fragments of)
first-order logic:

i n t 3 2 i1 , i 2 ;
. . .
assume (i 1 > 0) ;
a r r [0] = 1 ;
a r r [i 1 + i 2] = 2 ;
a s s e r t (a r r [0] = 1) ;

⇒

. . . ∧
i1 > 0 ∧

arr1 = store(arr0, 0, 1) ∧
arr2 = store(arr1, i1 + i2, 2) ∧

select(arr2, 0) ̸= 1

⇒

array0 7→ ⟨0, ..., 0⟩,
array1 7→ ⟨1, ..., 0⟩,
array2 7→ ⟨2, ..., 0⟩,

i1 7→ 231,

i2 7→ 231

The solver has efficient procedures for dealing with >, +, select, and store.

SMT solvers

Satisfiability Modulo Theories (SMT) solvers support reasoning in (fragments of)
first-order logic:

i n t 3 2 i1 , i 2 ;
. . .
assume (i 1 > 0) ;
a r r [0] = 1 ;
a r r [i 1 + i 2] = 2 ;
a s s e r t (a r r [0] = 1) ;

⇒

. . . ∧
i1 > 0 ∧

arr1 = store(arr0, 0, 1) ∧
arr2 = store(arr1, i1 + i2, 2) ∧

select(arr2, 0) ̸= 1

⇒

array0 7→ ⟨0, ..., 0⟩,
array1 7→ ⟨1, ..., 0⟩,
array2 7→ ⟨2, ..., 0⟩,

i1 7→ 231,

i2 7→ 231

The solver has efficient procedures for dealing with >, +, select, and store.

My Current Research

▶ Custom theory reasoning (“user-propagation”) in Z3

▶ Solving combinatorial problems by oracles, lazy axioms, efficient custom theories
▶ Improve reasoning time
▶ Less memory required

▶ Non-classical logics in SMT
▶ e.g., ⊤ ⊑ (♢r .a < 1 ∧ ♢r .a > 1) (ALC)

▶ Theorem proving via weird calculi in SMT
▶ e.g., {{P(x)}; {P(a),¬P(x) ∨ P(f (x)),¬P(f (f (a)))}, ∅} (Connection Calculus)

▶ New (Nielson) string solver as theory extension
▶ ”a” ++ x = x ++ ”b”

Applying SMT Propagation to
“Everything”

My Current Research
▶ Custom theory reasoning (“user-propagation”) in Z3

▶ Solving combinatorial problems by oracles, lazy axioms, efficient custom theories
▶ Improve reasoning time
▶ Less memory required

▶ Non-classical logics in SMT
▶ e.g., ⊤ ⊑ (♢r .a < 1 ∧ ♢r .a > 1) (ALC)

▶ Theorem proving via weird calculi in SMT
▶ e.g., {{P(x)}; {P(a),¬P(x) ∨ P(f (x)),¬P(f (f (a)))}, ∅} (Connection Calculus)

▶ New (Nielson) string solver as theory extension
▶ ”a” ++ x = x ++ ”b”

Applying SMT Propagation to
“Everything”

My Current Research
▶ Custom theory reasoning (“user-propagation”) in Z3

▶ Solving combinatorial problems by oracles, lazy axioms, efficient custom theories
▶ Improve reasoning time
▶ Less memory required

▶ Non-classical logics in SMT
▶ e.g., ⊤ ⊑ (♢r .a < 1 ∧ ♢r .a > 1) (ALC)

▶ Theorem proving via weird calculi in SMT
▶ e.g., {{P(x)}; {P(a),¬P(x) ∨ P(f (x)),¬P(f (f (a)))}, ∅} (Connection Calculus)

▶ New (Nielson) string solver as theory extension
▶ ”a” ++ x = x ++ ”b”

Applying SMT Propagation to
“Everything”

My Current Research

▶ Custom theory reasoning (“user-propagation”) in Z3
▶ Solving combinatorial problems by oracles, lazy axioms, efficient custom theories

▶ Improve reasoning time
▶ Less memory required

▶ Non-classical logics in SMT
▶ e.g., ⊤ ⊑ (♢r .a < 1 ∧ ♢r .a > 1) (ALC)

▶ Theorem proving via weird calculi in SMT
▶ e.g., {{P(x)}; {P(a),¬P(x) ∨ P(f (x)),¬P(f (f (a)))}, ∅} (Connection Calculus)

▶ New (Nielson) string solver as theory extension
▶ ”a” ++ x = x ++ ”b”

Applying SMT Propagation to
“Everything”

My Current Research

▶ Custom theory reasoning (“user-propagation”) in Z3
▶ Solving combinatorial problems by oracles, lazy axioms, efficient custom theories

▶ Improve reasoning time
▶ Less memory required

▶ Non-classical logics in SMT
▶ e.g., ⊤ ⊑ (♢r .a < 1 ∧ ♢r .a > 1) (ALC)

▶ Theorem proving via weird calculi in SMT
▶ e.g., {{P(x)}; {P(a),¬P(x) ∨ P(f (x)),¬P(f (f (a)))}, ∅} (Connection Calculus)

▶ New (Nielson) string solver as theory extension
▶ ”a” ++ x = x ++ ”b”

Applying SMT Propagation to
“Everything”

My Current Research

▶ Custom theory reasoning (“user-propagation”) in Z3
▶ Solving combinatorial problems by oracles, lazy axioms, efficient custom theories

▶ Improve reasoning time
▶ Less memory required

▶ Non-classical logics in SMT
▶ e.g., ⊤ ⊑ (♢r .a < 1 ∧ ♢r .a > 1) (ALC)

▶ Theorem proving via weird calculi in SMT
▶ e.g., {{P(x)}; {P(a),¬P(x) ∨ P(f (x)),¬P(f (f (a)))}, ∅} (Connection Calculus)

▶ New (Nielson) string solver as theory extension
▶ ”a” ++ x = x ++ ”b”

Applying SMT Propagation to
“Everything”

My Current Research

▶ Custom theory reasoning (“user-propagation”) in Z3
▶ Solving combinatorial problems by oracles, lazy axioms, efficient custom theories

▶ Improve reasoning time
▶ Less memory required

▶ Non-classical logics in SMT
▶ e.g., ⊤ ⊑ (♢r .a < 1 ∧ ♢r .a > 1) (ALC)

▶ Theorem proving via weird calculi in SMT
▶ e.g., {{P(x)}; {P(a),¬P(x) ∨ P(f (x)),¬P(f (f (a)))}, ∅} (Connection Calculus)

▶ New (Nielson) string solver as theory extension
▶ ”a” ++ x = x ++ ”b”

Applying SMT Propagation to
“Everything”

My Current Research

▶ Custom theory reasoning (“user-propagation”) in Z3
▶ Solving combinatorial problems by oracles, lazy axioms, efficient custom theories

▶ Improve reasoning time
▶ Less memory required

▶ Non-classical logics in SMT
▶ e.g., ⊤ ⊑ (♢r .a < 1 ∧ ♢r .a > 1) (ALC)

▶ Theorem proving via weird calculi in SMT
▶ e.g., {{P(x)}; {P(a),¬P(x) ∨ P(f (x)),¬P(f (f (a)))}, ∅} (Connection Calculus)

▶ New (Nielson) string solver as theory extension
▶ ”a” ++ x = x ++ ”b”

Applying SMT Propagation to
“Everything”

Interface Theory for Security and PrivacyInterface Theory for Security and PrivacyInterface Theory for Security and Privacy

Ana Oliveira da Costa

Institute of Science and Technology Austria (ISTA)

October 9, 2023

Designing Secure Systems

We need to consider:

 Multiple architectural layers.

 Sub-systems developed by different teams.

 Heterogeneous components.

 Interaction between cyber and physical components.

⇓
Contract-based design.

2Ana O. da Costa — Interface Theory for Security and Privacy

Designing Secure Systems

We need to consider:

 Multiple architectural layers.

 Sub-systems developed by different teams.

 Heterogeneous components.

 Interaction between cyber and physical components.

⇓
Contract-based design.

2Ana O. da Costa — Interface Theory for Security and Privacy

Interface Theory

Luca de Alfaro and Thomas A. Henzinger. Interface theories for component-based design. (2001)

⟨I,⪯,∼,⊗⟩ where ⪯ is refinement, ∼ is compatibility, and ⊗ is composition.

Composition (⊗)

Refinement (⪯)

3Ana O. da Costa — Interface Theory for Security and Privacy

Interface Theory

Luca de Alfaro and Thomas A. Henzinger. Interface theories for component-based design. (2001)

⟨I,⪯,∼,⊗⟩ where ⪯ is refinement, ∼ is compatibility, and ⊗ is composition.

Composition (⊗)

Refinement (⪯)

F2F1

3Ana O. da Costa — Interface Theory for Security and Privacy

Interface Theory

Luca de Alfaro and Thomas A. Henzinger. Interface theories for component-based design. (2001)

⟨I,⪯,∼,⊗⟩ where ⪯ is refinement, ∼ is compatibility, and ⊗ is composition.

Composition (⊗)

Refinement (⪯)
F12

F13 F21

F2F1

F11

F22

3Ana O. da Costa — Interface Theory for Security and Privacy

Interface Theory

Incremental Design: Composition only requires knowledge about the parts being composed.

If F ∼ G and F ⊗ G ∼ H, then G ∼ H and F ∼ G ⊗ H.

Independent Implementability: Independent refinement of subsystems.

If F ∼ G and F ′ ⪯ F , then F ′ ∼ G and F ′ ⊗ G ⪯ F ⊗ G.

4Ana O. da Costa — Interface Theory for Security and Privacy

Interface Theory

Incremental Design: Composition only requires knowledge about the parts being composed.

If F ∼ G and F ⊗ G ∼ H, then G ∼ H and F ∼ G ⊗ H.

Independent Implementability: Independent refinement of subsystems.

If F ∼ G and F ′ ⪯ F , then F ′ ∼ G and F ′ ⊗ G ⪯ F ⊗ G.

F12

F13 F21

F2F1

F11

F22

4Ana O. da Costa — Interface Theory for Security and Privacy

Interface Theory

Incremental Design: Composition only requires knowledge about the parts being composed.

If F ∼ G and F ⊗ G ∼ H, then G ∼ H and F ∼ G ⊗ H.

Independent Implementability: Independent refinement of subsystems.

If F ∼ G and F ′ ⪯ F , then F ′ ∼ G and F ′ ⊗ G ⪯ F ⊗ G.

F12

F13 F21

F2F1

F11

F22

4Ana O. da Costa — Interface Theory for Security and Privacy

Interface Theory

Incremental Design: Composition only requires knowledge about the parts being composed.

If F ∼ G and F ⊗ G ∼ H, then G ∼ H and F ∼ G ⊗ H.

Independent Implementability: Independent refinement of subsystems.

If F ∼ G and F ′ ⪯ F , then F ′ ∼ G and F ′ ⊗ G ⪯ F ⊗ G.

F12

F13 F21

F2F1

F11

F22

4Ana O. da Costa — Interface Theory for Security and Privacy

Interface Theory

Incremental Design: Composition only requires knowledge about the parts being composed.

If F ∼ G and F ⊗ G ∼ H, then G ∼ H and F ∼ G ⊗ H.

Independent Implementability: Independent refinement of subsystems.

If F ∼ G and F ′ ⪯ F , then F ′ ∼ G and F ′ ⊗ G ⪯ F ⊗ G.

4Ana O. da Costa — Interface Theory for Security and Privacy

Information-flow Interfaces

Ezio Bartocci, Thomas Ferrère, Thomas Henzinger, Dejan Nickovic, D., and Ana O. da Costa.
Information-flow interfaces. (2022)

Security policies abstracted as information-flow constraints.

Interfaces specify:

 disjoint sets of input and output variables, X ∩ Y = ∅;

 no-flow constraints on the environment as assumptions;

 no-flow requirements on implementations as open-guarantees;

 no-flow requirements on the closed-system as closed-guarantees.

5Ana O. da Costa — Interface Theory for Security and Privacy

Information-flow Interfaces

Ezio Bartocci, Thomas Ferrère, Thomas Henzinger, Dejan Nickovic, D., and Ana O. da Costa.
Information-flow interfaces. (2022)

Security policies abstracted as information-flow constraints.

Interfaces specify:

 disjoint sets of input and output variables, X ∩ Y = ∅;

 no-flow constraints on the environment as assumptions;

 no-flow requirements on implementations as open-guarantees;

 no-flow requirements on the closed-system as closed-guarantees.

Fteam

imm

ecu

can

key

5Ana O. da Costa — Interface Theory for Security and Privacy

Information-flow Interfaces

Ezio Bartocci, Thomas Ferrère, Thomas Henzinger, Dejan Nickovic, D., and Ana O. da Costa.
Information-flow interfaces. (2022)

Security policies abstracted as information-flow constraints.

Interfaces specify:

 disjoint sets of input and output variables, X ∩ Y = ∅;

 no-flow constraints on the environment as assumptions;

 no-flow requirements on implementations as open-guarantees;

 no-flow requirements on the closed-system as closed-guarantees.

Fteam

imm

ecu

can

key

5Ana O. da Costa — Interface Theory for Security and Privacy

Information-flow Interfaces

Ezio Bartocci, Thomas Ferrère, Thomas Henzinger, Dejan Nickovic, D., and Ana O. da Costa.
Information-flow interfaces. (2022)

Security policies abstracted as information-flow constraints.

Interfaces specify:

 disjoint sets of input and output variables, X ∩ Y = ∅;

 no-flow constraints on the environment as assumptions;

 no-flow requirements on implementations as open-guarantees;

 no-flow requirements on the closed-system as closed-guarantees.

Fteam

imm

ecu

can

key

5Ana O. da Costa — Interface Theory for Security and Privacy

Information-flow Interfaces

Ezio Bartocci, Thomas Ferrère, Thomas Henzinger, Dejan Nickovic, D., and Ana O. da Costa.
Information-flow interfaces. (2022)

Security policies abstracted as information-flow constraints.

Interfaces specify:

 disjoint sets of input and output variables, X ∩ Y = ∅;

 no-flow constraints on the environment as assumptions;

 no-flow requirements on implementations as open-guarantees;

 no-flow requirements on the closed-system as closed-guarantees.

Fteam

imm

ecu

can

key

5Ana O. da Costa — Interface Theory for Security and Privacy

What is next?

 Explore formalisms to specify what is an information flow.

 Dive into real-world use cases.

 Explore the limits of interface theory for the design of secure systems.

6Ana O. da Costa — Interface Theory for Security and Privacy

Finding counterexamples to ∀∃-safety hyperproperties

. . . and other forays into incorrectness

Tobias Nießen

TU Wien

October 9, 2023

Tobias Nießen (TU Wien) Finding counterexamples to ∀∃ hyperproperties October 9, 2023 1 / 4

∀∃-safety hyperproperties

Definition (informal, intuition)
“For each trace τ there exists a trace τ ′ such that τ and τ ′ do not interact badly.”

Example (Refinement)

∀Pτ ∃Qτ ′
(
inτ = inτ ′ ∧ outτ = outτ ′

)
Hint: y := x ∗ random(N)︸ ︷︷ ︸

P

refines y := x ∗ random(Z)︸ ︷︷ ︸
Q

, but not vice versa

Tobias Nießen (TU Wien) Finding counterexamples to ∀∃ hyperproperties October 9, 2023 2 / 4

∀∃-safety hyperproperties

Definition (informal, intuition)
“For each trace τ there exists a trace τ ′ such that τ and τ ′ do not interact badly.”

Example (Refinement)

∀Pτ ∃Qτ ′
(
inτ = inτ ′ ∧ outτ = outτ ′

)

Hint: y := x ∗ random(N)︸ ︷︷ ︸
P

refines y := x ∗ random(Z)︸ ︷︷ ︸
Q

, but not vice versa

Tobias Nießen (TU Wien) Finding counterexamples to ∀∃ hyperproperties October 9, 2023 2 / 4

∀∃-safety hyperproperties

Definition (informal, intuition)
“For each trace τ there exists a trace τ ′ such that τ and τ ′ do not interact badly.”

Example (Refinement)

∀Pτ ∃Qτ ′
(
inτ = inτ ′ ∧ outτ = outτ ′

)
Hint: y := x ∗ random(N)︸ ︷︷ ︸

P

refines y := x ∗ random(Z)︸ ︷︷ ︸
Q

, but not vice versa

Tobias Nießen (TU Wien) Finding counterexamples to ∀∃ hyperproperties October 9, 2023 2 / 4

Verification of ∀∃ hyperproperties – unsurprisingly difficult

Undecidability of trace properties

+ quantification over multiple traces

+ quantifier alternation

Loops Infinite states Complete Counterexamples

Strategy-based approaches ✓ ✓ ✗ ✗

Automata-based approaches ✓ ✗ ✓ ✗

Relational Hoare-style logic ✗ ✓ ✓ ✓

Tobias Nießen (TU Wien) Finding counterexamples to ∀∃ hyperproperties October 9, 2023 3 / 4

Verification of ∀∃ hyperproperties – unsurprisingly difficult

Undecidability of trace properties

+ quantification over multiple traces

+ quantifier alternation

Loops Infinite states Complete Counterexamples

Strategy-based approaches ✓ ✓ ✗ ✗

Automata-based approaches ✓ ✗ ✓ ✗

Relational Hoare-style logic ✗ ✓ ✓ ✓

Tobias Nießen (TU Wien) Finding counterexamples to ∀∃ hyperproperties October 9, 2023 3 / 4

∀∃-safety hyperproperties – our approach to finding counterexamples

Goal: find model for negation of ∀∃-safety property

Combine underapproximate methods to find counterexamples

symbolic execution for universally quantified traces

bounded model checking for existentially quantified traces

lift both algorithms to an SMT solver for infinite variable domains

typically requires many iterations to exclude spurious refutations

Does this terminate? Sometimes. Maybe. It depends. . .

Tobias Nießen (TU Wien) Finding counterexamples to ∀∃ hyperproperties October 9, 2023 4 / 4

∀∃-safety hyperproperties – our approach to finding counterexamples

Goal: find model for negation of ∀∃-safety property

Combine underapproximate methods to find counterexamples

symbolic execution for universally quantified traces

bounded model checking for existentially quantified traces

lift both algorithms to an SMT solver for infinite variable domains

typically requires many iterations to exclude spurious refutations

Does this terminate? Sometimes. Maybe. It depends. . .

Tobias Nießen (TU Wien) Finding counterexamples to ∀∃ hyperproperties October 9, 2023 4 / 4

∀∃-safety hyperproperties – our approach to finding counterexamples

Goal: find model for negation of ∀∃-safety property

Combine underapproximate methods to find counterexamples

symbolic execution for universally quantified traces

bounded model checking for existentially quantified traces

lift both algorithms to an SMT solver for infinite variable domains

typically requires many iterations to exclude spurious refutations

Does this terminate? Sometimes. Maybe. It depends. . .

Tobias Nießen (TU Wien) Finding counterexamples to ∀∃ hyperproperties October 9, 2023 4 / 4

1 / 12

Runtime Monitoring Neural Certificates

Emily Yu

Klosterneuburg, Austria
October 9, 2023

2 / 12

Dynamical Systems

f : X × U → X

[forbes.com]

3 / 12

Learning Certificate Functions

Requirements

� Stability: Lynapunov function V : X → R

−→ certifies stability around a fixed point

� Safety: Barrier function h : X → R

−→ certifies invariance of a region

Verifying Certificates faces challenges

� Generalization error bounds: [Liu+’20, Boffi+’21, ChangGao’21]

� Lipschitz arguments : [Richards+’18, BobitiLazar’18]

� Learner-verifier: [Chang+’19, Peruffo+’21, Chatterjee+’23] etc

4 / 12

Monitoring Certificate Functions

• Validating certificate at runtime

5 / 12

References I

Chang, Ya-Chien, and Sicun Gao. ”Stabilizing neural control using
self-learned almost lyapunov critics.” 2021 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2021.

Boffi, Nicholas, et al. ”Learning stability certificates from data.”
Conference on Robot Learning. PMLR, 2021.

Liu, Shenyu, Daniel Liberzon, and Vadim Zharnitsky. ”Almost Lyapunov
functions for nonlinear systems.” Automatica 113 (2020): 108758.

Richards, Spencer M., Felix Berkenkamp, and Andreas Krause. ”The
lyapunov neural network: Adaptive stability certification for safe learning
of dynamical systems.” Conference on Robot Learning. PMLR, 2018.

Bobiti, Ruxandra, and Mircea Lazar. ”Automated-sampling-based stability
verification and DOA estimation for nonlinear systems.” IEEE
Transactions on Automatic Control 63.11 (2018): 3659-3674.

Chatterjee, Krishnendu, et al. ”A Learner-Verifier Framework for Neural
Network Controllers and Certificates of Stochastic Systems.” International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems. Cham: Springer Nature Switzerland, 2023.

6 / 12

References II

Chang, Ya-Chien, Nima Roohi, and Sicun Gao. ”Neural lyapunov control.”
Advances in neural information processing systems 32 (2019).

Peruffo, Andrea, Daniele Ahmed, and Alessandro Abate. ”Automated and
formal synthesis of neural barrier certificates for dynamical models.”
International conference on tools and algorithms for the construction and
analysis of systems. Cham: Springer International Publishing, 2021.

https://www.forbes.com/sites/forbestechcouncil/2022/07/27/ai-from-
drug-discovery-to-robotics/?sh=37eef0c53d7f

7 / 12

Credits

Diagrams have been designed using images from Flaticon.com.

Quantitative

Safety and

Liveness of

Quantitative

Automata

Udi Boker †

Thomas A. Henzinger ‡

Nicolas Mazzocchi ‡

N. Ege Saraç ‡

† Reichman University, Israel

‡ Institute of Science and Technology, Austria

2023 – Klosterneuburg Austria

Boolean Properties

Definition

A Boolean property Φ ⊆ Σω or equivalently Φ : Σω → {0, 1}, is a language

Safety

Requests Not Duplicated

Safety closure

smaller enlargement
to get a safe language

Liveness

All Requests Granted

Theorem: Decomposition of Boolean properties1

All property Φ can be expressed by: Φ = Φsafe ∩ Φlive

Φsafe is safe

Φlive is live

2

Boolean Properties

Definition

A Boolean property Φ ⊆ Σω or equivalently Φ : Σω → {0, 1}, is a language

Safety

Requests Not Duplicated

Safety closure

smaller enlargement
to get a safe language

Liveness

All Requests Granted

Theorem: Decomposition of Boolean properties1

All property Φ can be expressed by: Φ = Φsafe ∩ Φlive

Φsafe is safe

Φlive is live

1 Alpern, Schneider. Defining liveness. 1985
3

Boolean Properties

Definition

A Boolean property Φ ⊆ Σω or equivalently Φ : Σω → {0, 1}, is a language

Safety

Requests Not Duplicated

Safety closure

smaller enlargement
to get a safe language

Liveness

All Requests Granted

Theorem: Decomposition of Boolean properties1

All property Φ can be expressed by: Φ = Φsafe ∩ Φlive

Φsafe is safe

Φlive is live

1 Alpern, Schneider. Defining liveness. 1985
4

Quantitative Properties

Definition2

A quantitative property Φ : Σω → D is a quantitative language where D is a complete lattice

Safety

Minimal Response Time

Safety closure

the least safety property that
bounds the original from above

Liveness

Average Response Time

Theorem: Decomposition of quantitative properties

All property Φ can be expressed by: Φ(w) = min{Φsafe(w), Φlive(w)} for all w ∈ Σω

Φsafe is safe

Φlive is live

2 Chatterjee, Doyen, Henzinger. Quantitative Languages. 2010
5

Quantitative Properties

Definition

A quantitative property Φ : Σω → D is a quantitative language where D is a complete lattice

Safety

Minimal Response Time

Safety closure

the least safety property that
bounds the original from above

Liveness

Average Response Time

Theorem: Decomposition of quantitative properties3

All property Φ can be expressed by: Φ(w) = min{Φsafe(w), Φlive(w)} for all w ∈ Σω

Φsafe is safe

Φlive is live

3 Henzinger, Mazzocchi, Saraç. Quantitative Safety and Liveness. 2023
6

Quantitative Automata

a1|x1 a2|x2

Word: w = a1a2 . . . Run value: x = f (x1x2 . . .)

Theorem1

The set {w ∈ Σω | A(w) = ⊤} is dense if and only
if the automaton A is live

Theorem4

An automaton is live if and only if its safety closure
is the constant ⊤

Value functions

Inf, Sup, LimInf, LimSup

LimInfAvg, LimSupAvg, DSum

Non-determinism

w |x

w |y

A(w) = sup{values of w ’s runs}

7

Quantitative Automata

a1|x1 a2|x2

Word: w = a1a2 . . . Run value: x = f (x1x2 . . .)

Theorem1

The set {w ∈ Σω | A(w) = ⊤} is dense if and only
if the automaton A is live

Theorem4

An automaton is live if and only if its safety closure
is the constant ⊤

Value functions

Inf, Sup, LimInf, LimSup

LimInfAvg, LimSupAvg, DSum

Non-determinism

w |x

w |y

A(w) = sup{values of w ’s runs}

8

Quantitative Automata

a1|x1 a2|x2

Word: w = a1a2 . . . Run value: x = f (x1x2 . . .)

Theorem4

The set {w ∈ Σω | A(w) = ⊤} is dense if and only
if the automaton A is live

Theorem4

An automaton is live if and only if its safety closure
is the constant ⊤

Value functions

Inf, Sup, LimInf, LimSup

LimInfAvg, LimSupAvg, DSum

Non-determinism

w |x

w |y

A(w) = sup{values of w ’s runs}

4 Boker, Henzinger, Mazzocchi, Saraç. Safety and Liveness of Quantitative Automata. 2023
9

Quantitative Automata

a1|x1 a2|x2

Word: w = a1a2 . . . Run value: x = f (x1x2 . . .)

Theorem4

The set {w ∈ Σω | A(w) = ⊤} is dense if and only
if the automaton A is live

Theorem4

An automaton is live if and only if its safety closure
is the constant ⊤

Value functions

Inf, Sup, LimInf, LimSup

LimInfAvg, LimSupAvg, DSum

Non-determinism

w |x

w |y

A(w) = sup{values of w ’s runs}

4 Boker, Henzinger, Mazzocchi, Saraç. Safety and Liveness of Quantitative Automata. 2023
10

Take away message

Inf Sup, LimInf, LimSup LimInfAvg, LimSupAvg DSum

Is it safe?

i.e., A⋆ = A
O(1) PSpace-complete ExpSpace PSpace-hard O(1)

Is it live?

i.e., A⋆ = ⊤
PSpace-complete

Decomposition

A = minAsafe Alive
O(1) PTime if deterministic Open O(1)

A⋆ is the Safety closure of A

1 T. A. Henzinger, N. Mazzocchi and
N. E. Saraç

Quantitative Safety and Liveness

In FOSSACS proceedings 2023

2 U. Boker, T. A. Henzinger, N. Mazzocchi
and N. E. Saraç

Safety and Liveness of Quantitative Automata

In CONCUR proceedings 2023

Thank you

11

Take away message

Inf Sup, LimInf, LimSup LimInfAvg, LimSupAvg DSum

Is it safe?

i.e., A⋆ = A
O(1) PSpace-complete ExpSpace PSpace-hard O(1)

Is it live?

i.e., A⋆ = ⊤
PSpace-complete

Decomposition

A = minAsafe Alive
O(1) PTime if deterministic Open O(1)

A⋆ is the Safety closure of A

1 T. A. Henzinger, N. Mazzocchi and
N. E. Saraç

Quantitative Safety and Liveness

In FOSSACS proceedings 2023

2 U. Boker, T. A. Henzinger, N. Mazzocchi
and N. E. Saraç

Safety and Liveness of Quantitative Automata

In CONCUR proceedings 2023

Thank you
12

1

PolySAT
A Word-level Solver for Large Bitvectors

Jakob Rath

TU Wien

Joint work with Clemens Eisenhofer, Daniela Kaufmann,
Nikolaj Bjørner, Laura Kovács

2

PolySAT: a Word-level Solver for Large Bitvectors

Bitvectors?
1. Sequence of bits, e.g., 01011

2. Fixed-width machine integers, e.g., uint32_t, int64_t

3. Modular arithmetic: Z/2kZ

Examples:
I 2x2y + z = 3
I x + 3 ≤ x + y
I ¬Ω∗(x , y), z = x & y , x [3:0] = 0, . . .

I Negation, disjunction of constraints

Existing approaches: bit-blasting, translation to integers

2

PolySAT: a Word-level Solver for Large Bitvectors

Bitvectors?
1. Sequence of bits, e.g., 01011

2. Fixed-width machine integers, e.g., uint32_t, int64_t

3. Modular arithmetic: Z/2kZ

Examples:
I 2x2y + z = 3
I x + 3 ≤ x + y
I ¬Ω∗(x , y), z = x & y , x [3:0] = 0, . . .

I Negation, disjunction of constraints

Existing approaches: bit-blasting, translation to integers

2

PolySAT: a Word-level Solver for Large Bitvectors

Bitvectors?
1. Sequence of bits, e.g., 01011

2. Fixed-width machine integers, e.g., uint32_t, int64_t

3. Modular arithmetic: Z/2kZ

Examples:
I 2x2y + z = 3
I x + 3 ≤ x + y
I ¬Ω∗(x , y), z = x & y , x [3:0] = 0, . . .

I Negation, disjunction of constraints

Existing approaches: bit-blasting, translation to integers

3

Example
x + 3 ≤ x + y mod 23

I For x = 0: 3 ≤ y ⇐⇒ y ∈ {3, 4, 5, 6, 7}
I For x = 2: 5 ≤ 2 + y ⇐⇒ y ∈ {3, 4, 5}

I x + 3 ≤ −y + 2 mod 23

PolySAT is a theory solver for bitvector arithmetic:
I Search for a model of the input formula
I Incrementally assign bitvector variables (e.g., x := 2)
I Propagate feasible sets, e.g.:

x := 2 ∧ x + 3 ≤ x + y =⇒ y ∈ {3, 4, 5} (mod 23)

I Add lemmas on demand, e.g.:
px < qx ∧ ¬Ω∗(p, x) =⇒ p < q

3

Example
x + 3 ≤ x + y mod 23

I For x = 0: 3 ≤ y ⇐⇒ y ∈ {3, 4, 5, 6, 7}
I For x = 2: 5 ≤ 2 + y ⇐⇒ y ∈ {3, 4, 5}
I x + 3 ≤ −y + 2 mod 23

p ≤ q
p ≤ p − q − 1
q − p ≤ q
q − p ≤ −p − 1
−q − 1 ≤ −p − 1
−q − 1 ≤ p − q − 1

PolySAT is a theory solver for bitvector arithmetic:
I Search for a model of the input formula
I Incrementally assign bitvector variables (e.g., x := 2)
I Propagate feasible sets, e.g.:

x := 2 ∧ x + 3 ≤ x + y =⇒ y ∈ {3, 4, 5} (mod 23)

I Add lemmas on demand, e.g.:
px < qx ∧ ¬Ω∗(p, x) =⇒ p < q

3

Example
x + 3 ≤ x + y mod 23

I For x = 0: 3 ≤ y ⇐⇒ y ∈ {3, 4, 5, 6, 7}
I For x = 2: 5 ≤ 2 + y ⇐⇒ y ∈ {3, 4, 5}
I x + 3 ≤ −y + 2 mod 23

p ≤ q
p ≤ p − q − 1
q − p ≤ q
q − p ≤ −p − 1
−q − 1 ≤ −p − 1
−q − 1 ≤ p − q − 1

PolySAT is a theory solver for bitvector arithmetic:
I Search for a model of the input formula
I Incrementally assign bitvector variables (e.g., x := 2)
I Propagate feasible sets, e.g.:

x := 2 ∧ x + 3 ≤ x + y =⇒ y ∈ {3, 4, 5} (mod 23)

I Add lemmas on demand, e.g.:
px < qx ∧ ¬Ω∗(p, x) =⇒ p < q

From loops, to program synthesis, and beyond!

Daneshvar Amrollahi

TU Wien

Joint work with P. Hozzová, L. Kovács, M. Moosbrugger, etc.

October 9, 2023

Loops

A major challenge in formal verification

▶ Loop invariants
▶ Capture loop behavior as a logical formula: x + 3y2 = 2z3

▶ Used in program verification
▶ Automated invariant generation techniques based on symbolic

computation, algebraic recurrence equations, static analysis,
etc.

▶ Loop synthesis
▶ Synthesizing a program (loop) given a specification
▶ Program correctness by construction
▶ Specification: a polynomial loop invariant
▶ Applications in compiler optimization: single path loops, linear

updates

Loops

A major challenge in formal verification

▶ Loop invariants
▶ Capture loop behavior as a logical formula: x + 3y2 = 2z3

▶ Used in program verification
▶ Automated invariant generation techniques based on symbolic

computation, algebraic recurrence equations, static analysis,
etc.

▶ Loop synthesis
▶ Synthesizing a program (loop) given a specification
▶ Program correctness by construction
▶ Specification: a polynomial loop invariant
▶ Applications in compiler optimization: single path loops, linear

updates

Loops

A major challenge in formal verification

▶ Loop invariants
▶ Capture loop behavior as a logical formula: x + 3y2 = 2z3

▶ Used in program verification
▶ Automated invariant generation techniques based on symbolic

computation, algebraic recurrence equations, static analysis,
etc.

▶ Loop synthesis
▶ Synthesizing a program (loop) given a specification
▶ Program correctness by construction
▶ Specification: a polynomial loop invariant
▶ Applications in compiler optimization: single path loops, linear

updates

Program Synthesis

▶ A framework based on saturation-based theorem proving.

▶ Specification: ∀x̄ .∃y .F [x̄ , y]
▶ Framework output:

▶ A program with if-then-else statements
▶ A proof that the spec. holds (using Vampire)

Beyond

Something around SMT with Clark Barrett at Stanford

AUTOSARD

Automated Sublinear Amortised Resource
Analysis of Data Structures

Matthias Hetzenberger

supervised by Florian Zuleger

AUTOSARD
Automated Sublinear Amortised Resource

Analysis of Data Structures

Matthias Hetzenberger

supervised by Florian Zuleger

• Goal: develop automated reasoning techniques w.r.t. amortised
cost analysis of (probabilistic) functional data structures

• Extend pilot project ATLAS based on type-and-effect system and
potential functions [Leutgeb, Moser, and Zuleger 2022]

• Current focus Zip Trees [Tarjan, Levy, and Timmel 2021]

• Goal: develop automated reasoning techniques w.r.t. amortised
cost analysis of (probabilistic) functional data structures

• Extend pilot project ATLAS based on type-and-effect system and
potential functions [Leutgeb, Moser, and Zuleger 2022]

• Current focus Zip Trees [Tarjan, Levy, and Timmel 2021]

• Goal: develop automated reasoning techniques w.r.t. amortised
cost analysis of (probabilistic) functional data structures

• Extend pilot project ATLAS based on type-and-effect system and
potential functions [Leutgeb, Moser, and Zuleger 2022]

• Current focus Zip Trees [Tarjan, Levy, and Timmel 2021]

Leutgeb, Lorenz, Georg Moser, and Florian Zuleger (2022).
“Automated Expected Amortised Cost Analysis of Probabilistic
Data Structures”. In: Computer Aided Verification. Springer
International Publishing, pp. 70–91. doi:
10.1007/978-3-031-13188-2_4. url:
https://doi.org/10.1007/978-3-031-13188-2_4.

Tarjan, Robert E., Caleb Levy, and Stephen Timmel (Oct. 2021).
“Zip Trees”. In: ACM Transactions on Algorithms 17.4, pp. 1–12.
doi: 10.1145/3476830. url:
https://doi.org/10.1145/3476830.

https://doi.org/10.1007/978-3-031-13188-2_4
https://doi.org/10.1007/978-3-031-13188-2_4
https://doi.org/10.1145/3476830
https://doi.org/10.1145/3476830

IC3

Islam Hamada

TU Wien

2023

Overview

▶ Prominent model checking algorithm.

▶ builds multiple successive overapproximations of reachable
states simultaneously.

▶ looks for a proof of correctness by finding an inductive
invariant that is safe, otherwise gives a counter example.

▶ Building the invariant is guided by CTIs.

Ri ∧ T ∧ ¬P ′

Overview

▶ Prominent model checking algorithm.

▶ builds multiple successive overapproximations of reachable
states simultaneously.

▶ looks for a proof of correctness by finding an inductive
invariant that is safe, otherwise gives a counter example.

▶ Building the invariant is guided by CTIs.

Ri ∧ T ∧ ¬P ′

Overview

▶ Prominent model checking algorithm.

▶ builds multiple successive overapproximations of reachable
states simultaneously.

▶ looks for a proof of correctness by finding an inductive
invariant that is safe, otherwise gives a counter example.

▶ Building the invariant is guided by CTIs.

Ri ∧ T ∧ ¬P ′

Overview

▶ Prominent model checking algorithm.

▶ builds multiple successive overapproximations of reachable
states simultaneously.

▶ looks for a proof of correctness by finding an inductive
invariant that is safe, otherwise gives a counter example.

▶ Building the invariant is guided by CTIs.

Ri ∧ T ∧ ¬P ′

Aspects To Investigate

▶ The used heuristic for generalizing clauses

▶ Save and reuse CTIs

▶ Avoiding duplicate clauses.

▶ Global clauses

▶ Generalizing the CTIs further

Aspects To Investigate

▶ The used heuristic for generalizing clauses

▶ Save and reuse CTIs

▶ Avoiding duplicate clauses.

▶ Global clauses

▶ Generalizing the CTIs further

Aspects To Investigate

▶ The used heuristic for generalizing clauses

▶ Save and reuse CTIs

▶ Avoiding duplicate clauses.

▶ Global clauses

▶ Generalizing the CTIs further

Aspects To Investigate

▶ The used heuristic for generalizing clauses

▶ Save and reuse CTIs

▶ Avoiding duplicate clauses.

▶ Global clauses

▶ Generalizing the CTIs further

Aspects To Investigate

▶ The used heuristic for generalizing clauses

▶ Save and reuse CTIs

▶ Avoiding duplicate clauses.

▶ Global clauses

▶ Generalizing the CTIs further

Incremental IC3

▶ Two related transition relations, T and Tc such that Tc ⊆ T .

▶ Reusing clauses directly

▶ Reusing CTIs and lifting them further

▶ Reusing the invariant

Incremental IC3

▶ Two related transition relations, T and Tc such that Tc ⊆ T .

▶ Reusing clauses directly

▶ Reusing CTIs and lifting them further

▶ Reusing the invariant

Incremental IC3

▶ Two related transition relations, T and Tc such that Tc ⊆ T .

▶ Reusing clauses directly

▶ Reusing CTIs and lifting them further

▶ Reusing the invariant

Incremental IC3

▶ Two related transition relations, T and Tc such that Tc ⊆ T .

▶ Reusing clauses directly

▶ Reusing CTIs and lifting them further

▶ Reusing the invariant

Learn to be Dynamical

Mahyar Karimi

ISTA

October 9, 2023

All about Dynamical Systems

▶ Jumping particle:

X

T

▶ Transitions: xt+1 = f (xt).

▶ Can we reach T?

All about Dynamical Systems

▶ Jumping particle:

X

T

▶ Transitions: xt+1 = f (xt).

▶ Can we reach T?

All about Dynamical Systems

▶ Jumping particle:

X

T

▶ Transitions: xt+1 = f (xt).

▶ Can we reach T?

All about Dynamical Systems

▶ Jumping particle:

X

T

▶ Transitions: xt+1 = f (xt).

▶ Can we reach T?

All about Dynamical Systems

▶ Jumping particle:

X

T

▶ Transitions: xt+1 = f (xt).

▶ Can we reach T?

All about Dynamical Systems

▶ Jumping particle:

X

T

▶ Transitions: xt+1 = f (xt).

▶ Can we reach T?

All about Dynamical Systems

▶ Jumping particle:

X

T

▶ Transitions: xt+1 = f (xt).

▶ Can we reach T?

Lyapunov Functions

Can we have a function V that

1. is non-negative: V (x) ≥ 0

2. decreases with every transition: V (x) > V (f (x))?

▶ For nonlinear systems, V is not easy to find.

▶ SMT for finding V ? Precise, but slow.

▶ Guided search for V ?

Lyapunov Functions

Can we have a function V that

1. is non-negative: V (x) ≥ 0

2. decreases with every transition: V (x) > V (f (x))?

▶ For nonlinear systems, V is not easy to find.

▶ SMT for finding V ? Precise, but slow.

▶ Guided search for V ?

Lyapunov Functions

Can we have a function V that

1. is non-negative: V (x) ≥ 0

2. decreases with every transition: V (x) > V (f (x))?

▶ For nonlinear systems, V is not easy to find.

▶ SMT for finding V ? Precise, but slow.

▶ Guided search for V ?

Lyapunov Functions

Can we have a function V that

1. is non-negative: V (x) ≥ 0

2. decreases with every transition: V (x) > V (f (x))?

▶ For nonlinear systems, V is not easy to find.

▶ SMT for finding V ? Precise, but slow.

▶ Guided search for V ?

Neural Lyapunov Functions

Let’s use a neural network to find V !

▶ Learning V ⇐= Loss Function + Gradient Descent

▶ Loss should capture V .

Catch! No guarantee for generalization.
Good news; we can use SMT solving.

Neural Lyapunov Functions

Let’s use a neural network to find V !

▶ Learning V ⇐= Loss Function + Gradient Descent

▶ Loss should capture V .

Catch! No guarantee for generalization.

Good news; we can use SMT solving.

Neural Lyapunov Functions

Let’s use a neural network to find V !

▶ Learning V ⇐= Loss Function + Gradient Descent

▶ Loss should capture V .

Catch! No guarantee for generalization.
Good news; we can use SMT solving.

Is V All We Can Learn?

No.

▶ Replacing f with a neural network.
Benefit; NN instead of mathematical object.
Catch! 2 generalization queries instead of 1.

▶ More can be learned: partitioning X , error bounds, . . .

Is V All We Can Learn?

No.

▶ Replacing f with a neural network.
Benefit; NN instead of mathematical object.
Catch! 2 generalization queries instead of 1.

▶ More can be learned: partitioning X , error bounds, . . .

Is V All We Can Learn?

No.

▶ Replacing f with a neural network.

Benefit; NN instead of mathematical object.
Catch! 2 generalization queries instead of 1.

▶ More can be learned: partitioning X , error bounds, . . .

Is V All We Can Learn?

No.

▶ Replacing f with a neural network.
Benefit; NN instead of mathematical object.

Catch! 2 generalization queries instead of 1.

▶ More can be learned: partitioning X , error bounds, . . .

Is V All We Can Learn?

No.

▶ Replacing f with a neural network.
Benefit; NN instead of mathematical object.
Catch! 2 generalization queries instead of 1.

▶ More can be learned: partitioning X , error bounds, . . .

Is V All We Can Learn?

No.

▶ Replacing f with a neural network.
Benefit; NN instead of mathematical object.
Catch! 2 generalization queries instead of 1.

▶ More can be learned: partitioning X , error bounds, . . .

Separation Logic for Program
Analysis

Florian Sextl
2023-10-09

Central Ideas

Goals

• Verify memory safety even in unsafe programs (e.g. C/unsafe in Rust)
• Make it usable (fully automatic, acceptable runtime, strong guarantees)

Approach

• Based on strong but manageable separation logic
• Symbolic execution with bi-abduction

2023-10-09 Separation Logic for Program Analysis, Florian Sextl 2 / 3

Central Ideas

Goals
• Verify memory safety even in unsafe programs (e.g. C/unsafe in Rust)

• Make it usable (fully automatic, acceptable runtime, strong guarantees)

Approach

• Based on strong but manageable separation logic
• Symbolic execution with bi-abduction

2023-10-09 Separation Logic for Program Analysis, Florian Sextl 2 / 3

Central Ideas

Goals
• Verify memory safety even in unsafe programs (e.g. C/unsafe in Rust)
• Make it usable (fully automatic, acceptable runtime, strong guarantees)

Approach

• Based on strong but manageable separation logic
• Symbolic execution with bi-abduction

2023-10-09 Separation Logic for Program Analysis, Florian Sextl 2 / 3

Central Ideas

Goals
• Verify memory safety even in unsafe programs (e.g. C/unsafe in Rust)
• Make it usable (fully automatic, acceptable runtime, strong guarantees)

Approach

• Based on strong but manageable separation logic
• Symbolic execution with bi-abduction

2023-10-09 Separation Logic for Program Analysis, Florian Sextl 2 / 3

Central Ideas

Goals
• Verify memory safety even in unsafe programs (e.g. C/unsafe in Rust)
• Make it usable (fully automatic, acceptable runtime, strong guarantees)

Approach
• Based on strong but manageable separation logic

• Symbolic execution with bi-abduction

2023-10-09 Separation Logic for Program Analysis, Florian Sextl 2 / 3

Central Ideas

Goals
• Verify memory safety even in unsafe programs (e.g. C/unsafe in Rust)
• Make it usable (fully automatic, acceptable runtime, strong guarantees)

Approach
• Based on strong but manageable separation logic
• Symbolic execution with bi-abduction

2023-10-09 Separation Logic for Program Analysis, Florian Sextl 2 / 3

Previously: Sound Bi-abduction-based Shape Analysis

O

... ℓ2

...

NULL

ℓ1

o

i

next

O

...

...

NULL

. . .

next

...

...

NULL

NULL

o

next next

Shape Extrapolation

2023-10-09 Separation Logic for Program Analysis, Florian Sextl 3 / 3

Program Synthesis via {Saturation, SMT solving}

Petra Hozzová

supervised by Laura Kovács,
and working with Andrei Voronkov, Nikolaj Bjørner, Daneshvar Amrollahi, . . .

Synthesis in saturation

Synthesize a program computing y for any x such that F (x , y) holds

using a saturation-based prover proving ∀x .∃y .F (x , y) using induction.

Synthesis in saturation

Synthesize a program computing y for any x such that

first-order formula,
x are inputs and y is the output

F (x , y) holds

using a saturation-based prover proving ∀x .∃y .F (x , y) using induction.

Synthesis in saturation

Synthesize a program

term, possibly using if−then−else,
recursively defined functions,

and only containing computable symbols

computing y for any x such that

first-order formula,
x are inputs and y is the output

F (x , y) holds

using a saturation-based prover proving ∀x .∃y .F (x , y) using induction.

Synthesis in saturation

Synthesize a program

term, possibly using if−then−else,
recursively defined functions,

and only containing computable symbols

computing y for any x such that

first-order formula,
x are inputs and y is the output

F (x , y) holds

using a saturation-based prover

using answer literals,
supporting derivation of clauses C ∨ ans(r) where C is computable,

expressing “if ¬C , then r is the program”

proving ∀x .∃y .F (x , y) using induction.

Synthesis with SMT-solving

Synthesize a program computing the function f such that F (x , f) holds

using quantifier elimination games for ∃f .∀x .F (x , f).*

Synthesis with SMT-solving

Synthesize a program computing the function f such that

first-order formula, f ’s arguments
are terms dependent on x

F (x , f) holds

using quantifier elimination games for ∃f .∀x .F (x , f).*

Synthesis with SMT-solving

Synthesize a program

term, possibly using if−then−else,
and only containing computable symbols

computing the function f such that

first-order formula, f ’s arguments
are terms dependent on x

F (x , f) holds

using quantifier elimination games for ∃f .∀x .F (x , f).*

Synthesis with SMT-solving

Synthesize a program

term, possibly using if−then−else,
and only containing computable symbols

computing the function f such that

first-order formula, f ’s arguments
are terms dependent on x

F (x , f) holds

using quantifier elimination games

Using an interplay of two procedures, that in turns find interpretations of f and x .
If the final interpretation satisfies the formula, we learn a case in the program.

Otherwise we either learn a lemma or conclude the synthesis.

for ∃f .∀x .F (x , f).*

Krishnendu Chatterjee, Thomas Henzinger, Stefanie Muroya Lei

Quantum Information Markov Decision
Processes for Robust Quantum Programs

Synthesis

Quantum Algorithms
Workflow

Q U A N T U M S TAT E
I N A W E L L

D E F I N E D S TAT E

A P R O B A B I L I T Y
D I S T R I B U T I O N

O V E R C L A S S I C A L
S TAT E S

A P P LY Q U A N T U M
G AT E S A N D

M E A S U R E M E N T S

Challenges

- Quantum Computers are very noisy

- The no-cloning theorem

- We cannot directly observe quantum states

- Quantum algorithms are hard to engineer

Input Output

: set of target statesT

T

: thresholdλ

λ

H

H: hardware spec.

Quantum Information Markov
Decision Process

Program for H
that reaches with

 from Pr(T) ≥ λ
O0O0

: distribution over statesO0

I

: set of instructionsI

Partially Observable Markov
Decision Processes (POMDP)

A POMDP is a tuple where:

• is a set of states

• is a set of actions

• is a set of observations

• is a
probabilistic transition function

•

⟨S, A, 𝒪, Δ, γ1⟩

S

A

𝒪

Δ : S × A × S → [0,1]

γ1 : S → 𝒪

Quantum Information Markov
Decision Processes (QIMDP)

A QIMDP is a tuple where:

• is a set of hybrid states

• is a set of instructions

• is a set of classical states

• is a
probabilistic transition function

•

⟨M, I, C, →H , γ2⟩

M

I

C

→H: M × I × M → [0,1]

γ2 : M → C

Daniela Kaufmann

CALGSAT
Combining Computer Algebra with SAT Solving

● Recent success in formal verification
● word-level and bit-level models
● general purpose solvers
● returns all solutions

C ALGomputer ebra

● Over 50 years of research → “Killer application’’
● bit-level models
● dedicated heuristics and solving engines
● single assignments

SAT Solving

SAT Solver

Propositional Logic Formula

Single assignments

Model

Reasoning
Engine

Solution

Computer Algebra System

System with all solutions

Polynomial System

Circuit Verification

Computer algebra + SAT
solves 384/384

SAT solves 0/384

Computer algebra
solves 254/384

[1] Kaufmann, Biere, Kauers. Verifying Large Multipliers by Combining SAT and Computer Algebra. FMCAD 2019: 28-36

C ALGomputer ebra

Pseudo-Boolean Integer Polynomials

● Hardware verification

Variables represent signals in circuits
Integer coefficients for word-level
specification Polynomials in finite domains

● Verification of cryptosystems

Variables and coefficients are used
to represent states of the system

Theory Reasoning in Saturation Theorem Proving

Johannes Schoisswohl

Theory Reasoning in Saturation Theorem Proving

Johannes Schoisswohl

Theory Reasoning in Saturation Theorem Proving

Johannes Schoisswohl

Theory Reasoning in Saturation Theorem Proving

• Saturation Algorithms

• Assume ¬φ
• Apply a set of rules exhaustively

• Until contradiction found or no rules applicable

• Mainly for Uninterpreted Symbols

• Theory Reasoning

• Symbols have predefined meaning (e.g. +, <)

• Naively handled with axioms (e.g. x < y ∧ y < z → x < z)

• Problem: Very explosive!

x0 < x1 ∧ x1 < x2 → x0 < x2

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 → x0 < x3

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 ∧ x3 < x4 → x0 < x4

. . .

x0 < x1 x1 < x2
x0 < x2

1

Theory Reasoning in Saturation Theorem Proving

• Saturation Algorithms

• Assume ¬φ

• Apply a set of rules exhaustively

• Until contradiction found or no rules applicable

• Mainly for Uninterpreted Symbols

• Theory Reasoning

• Symbols have predefined meaning (e.g. +, <)

• Naively handled with axioms (e.g. x < y ∧ y < z → x < z)

• Problem: Very explosive!

x0 < x1 ∧ x1 < x2 → x0 < x2

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 → x0 < x3

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 ∧ x3 < x4 → x0 < x4

. . .

x0 < x1 x1 < x2
x0 < x2

1

Theory Reasoning in Saturation Theorem Proving

• Saturation Algorithms

• Assume ¬φ
• Apply a set of rules exhaustively

• Until contradiction found or no rules applicable

• Mainly for Uninterpreted Symbols

• Theory Reasoning

• Symbols have predefined meaning (e.g. +, <)

• Naively handled with axioms (e.g. x < y ∧ y < z → x < z)

• Problem: Very explosive!

x0 < x1 ∧ x1 < x2 → x0 < x2

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 → x0 < x3

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 ∧ x3 < x4 → x0 < x4

. . .

x0 < x1 x1 < x2
x0 < x2

1

Theory Reasoning in Saturation Theorem Proving

• Saturation Algorithms

• Assume ¬φ
• Apply a set of rules exhaustively

• Until contradiction found or no rules applicable

• Mainly for Uninterpreted Symbols

• Theory Reasoning

• Symbols have predefined meaning (e.g. +, <)

• Naively handled with axioms (e.g. x < y ∧ y < z → x < z)

• Problem: Very explosive!

x0 < x1 ∧ x1 < x2 → x0 < x2

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 → x0 < x3

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 ∧ x3 < x4 → x0 < x4

. . .

x0 < x1 x1 < x2
x0 < x2

1

Theory Reasoning in Saturation Theorem Proving

• Saturation Algorithms

• Assume ¬φ
• Apply a set of rules exhaustively

• Until contradiction found or no rules applicable

• Mainly for Uninterpreted Symbols

• Theory Reasoning

• Symbols have predefined meaning (e.g. +, <)

• Naively handled with axioms (e.g. x < y ∧ y < z → x < z)

• Problem: Very explosive!

x0 < x1 ∧ x1 < x2 → x0 < x2

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 → x0 < x3

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 ∧ x3 < x4 → x0 < x4

. . .

x0 < x1 x1 < x2
x0 < x2

1

Theory Reasoning in Saturation Theorem Proving

• Saturation Algorithms

• Assume ¬φ
• Apply a set of rules exhaustively

• Until contradiction found or no rules applicable

• Mainly for Uninterpreted Symbols

• Theory Reasoning

• Symbols have predefined meaning (e.g. +, <)

• Naively handled with axioms (e.g. x < y ∧ y < z → x < z)

• Problem: Very explosive!

x0 < x1 ∧ x1 < x2 → x0 < x2

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 → x0 < x3

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 ∧ x3 < x4 → x0 < x4

. . .

x0 < x1 x1 < x2
x0 < x2

1

Theory Reasoning in Saturation Theorem Proving

• Saturation Algorithms

• Assume ¬φ
• Apply a set of rules exhaustively

• Until contradiction found or no rules applicable

• Mainly for Uninterpreted Symbols

• Theory Reasoning

• Symbols have predefined meaning (e.g. +, <)

• Naively handled with axioms (e.g. x < y ∧ y < z → x < z)

• Problem: Very explosive!

x0 < x1 ∧ x1 < x2 → x0 < x2

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 → x0 < x3

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 ∧ x3 < x4 → x0 < x4

. . .

x0 < x1 x1 < x2
x0 < x2

1

Theory Reasoning in Saturation Theorem Proving

• Saturation Algorithms

• Assume ¬φ
• Apply a set of rules exhaustively

• Until contradiction found or no rules applicable

• Mainly for Uninterpreted Symbols

• Theory Reasoning

• Symbols have predefined meaning (e.g. +, <)

• Naively handled with axioms (e.g. x < y ∧ y < z → x < z)

• Problem: Very explosive!

x0 < x1 ∧ x1 < x2 → x0 < x2

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 → x0 < x3

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 ∧ x3 < x4 → x0 < x4

. . .

x0 < x1 x1 < x2
x0 < x2

1

Theory Reasoning in Saturation Theorem Proving

• Saturation Algorithms

• Assume ¬φ
• Apply a set of rules exhaustively

• Until contradiction found or no rules applicable

• Mainly for Uninterpreted Symbols

• Theory Reasoning

• Symbols have predefined meaning (e.g. +, <)

• Naively handled with axioms (e.g. x < y ∧ y < z → x < z)

• Problem: Very explosive!

x0 < x1 ∧ x1 < x2 → x0 < x2

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 → x0 < x3

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 ∧ x3 < x4 → x0 < x4

. . .

x0 < x1 x1 < x2
x0 < x2

1

Theory Reasoning in Saturation Theorem Proving

• Saturation Algorithms

• Assume ¬φ
• Apply a set of rules exhaustively

• Until contradiction found or no rules applicable

• Mainly for Uninterpreted Symbols

• Theory Reasoning

• Symbols have predefined meaning (e.g. +, <)

• Naively handled with axioms (e.g. x < y ∧ y < z → x < z)

• Problem: Very explosive!

x0 < x1 ∧ x1 < x2 → x0 < x2

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 → x0 < x3

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 ∧ x3 < x4 → x0 < x4

. . .

x0 < x1 x1 < x2
x0 < x2

1

Theory Reasoning in Saturation Theorem Proving

• Saturation Algorithms

• Assume ¬φ
• Apply a set of rules exhaustively

• Until contradiction found or no rules applicable

• Mainly for Uninterpreted Symbols

• Theory Reasoning

• Symbols have predefined meaning (e.g. +, <)

• Naively handled with axioms (e.g. x < y ∧ y < z → x < z)

• Problem: Very explosive!

x0 < x1 ∧ x1 < x2 → x0 < x2

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 → x0 < x3

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 ∧ x3 < x4 → x0 < x4

. . .

x0 < x1 x1 < x2
x0 < x2

1

Theory Reasoning in Saturation Theorem Proving

• Saturation Algorithms

• Assume ¬φ
• Apply a set of rules exhaustively

• Until contradiction found or no rules applicable

• Mainly for Uninterpreted Symbols

• Theory Reasoning

• Symbols have predefined meaning (e.g. +, <)

• Naively handled with axioms (e.g. x < y ∧ y < z → x < z)

• Problem: Very explosive!

x0 < x1 ∧ x1 < x2 → x0 < x2

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 → x0 < x3

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 ∧ x3 < x4 → x0 < x4

. . .

x0 < x1 x1 < x2
x0 < x2

1

Theory Reasoning in Saturation Theorem Proving

• Saturation Algorithms

• Assume ¬φ
• Apply a set of rules exhaustively

• Until contradiction found or no rules applicable

• Mainly for Uninterpreted Symbols

• Theory Reasoning

• Symbols have predefined meaning (e.g. +, <)

• Naively handled with axioms (e.g. x < y ∧ y < z → x < z)

• Problem: Very explosive!

x0 < x1 ∧ x1 < x2 → x0 < x2

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 → x0 < x3

x0 < x1 ∧ x1 < x2 ∧ x2 < x3 ∧ x3 < x4 → x0 < x4

. . .

x0 < x1 x1 < x2
x0 < x2

1

Theory Reasoning in Saturation Theorem Proving

Background Theories T + Quantifiers

• Naive approach: Axioms

• Better approach: Special Inference Systems

• ALASCA (done)

• Linear Real Arithmetic + Uninterpreted Functions

• Beats State of the Art

• ALASCAI (in progress)

• ALASCA + Floor Function

• Allows for integer reasoning

2

Theory Reasoning in Saturation Theorem Proving

Background Theories T + Quantifiers

• Naive approach: Axioms

• Better approach: Special Inference Systems

• ALASCA (done)

• Linear Real Arithmetic + Uninterpreted Functions

• Beats State of the Art

• ALASCAI (in progress)

• ALASCA + Floor Function

• Allows for integer reasoning

2

Theory Reasoning in Saturation Theorem Proving

Background Theories T + Quantifiers

• Naive approach: Axioms

• Better approach: Special Inference Systems

• ALASCA (done)

• Linear Real Arithmetic + Uninterpreted Functions

• Beats State of the Art

• ALASCAI (in progress)

• ALASCA + Floor Function

• Allows for integer reasoning

2

Theory Reasoning in Saturation Theorem Proving

Background Theories T + Quantifiers

• Naive approach: Axioms

• Better approach: Special Inference Systems

• ALASCA (done)

• Linear Real Arithmetic + Uninterpreted Functions

• Beats State of the Art

• ALASCAI (in progress)

• ALASCA + Floor Function

• Allows for integer reasoning

2

Theory Reasoning in Saturation Theorem Proving

Background Theories T + Quantifiers

• Naive approach: Axioms

• Better approach: Special Inference Systems

• ALASCA (done)

• Linear Real Arithmetic + Uninterpreted Functions

• Beats State of the Art

• ALASCAI (in progress)

• ALASCA + Floor Function

• Allows for integer reasoning

2

Theory Reasoning in Saturation Theorem Proving

Background Theories T + Quantifiers

• Naive approach: Axioms

• Better approach: Special Inference Systems

• ALASCA (done)

• Linear Real Arithmetic + Uninterpreted Functions

• Beats State of the Art

• ALASCAI (in progress)

• ALASCA + Floor Function

• Allows for integer reasoning

2

Bidding Games taking Charge
…in theory and in practice

Kaushik Mallik

Henzinger Group

Bid-Tac-Toe

Bid-Tac-Toe

€ 71 € 9

Bid-Tac-Toe

€ 71 € 9
7
8

+ ε
1
8

− ε

Bid-Tac-Toe

€ 71 € 9

10 9

7
8

+ ε
1
8

− ε

Bid-Tac-Toe

€ 71 € 9

10 9

7
8

+ ε
1
8

− ε

Bid-Tac-Toe

€ 71 € 9
€ 61 € 19

10 9

7
8

+ ε
1
8

− ε

Bid-Tac-Toe

€ 71 € 9
€ 61 € 19

7
8

+ ε
1
8

− ε

20 19

Bid-Tac-Toe

€ 71 € 9
€ 61 € 19

7
8

+ ε
1
8

− ε

20 19

Bid-Tac-Toe

€ 71 € 9
€ 61 € 19
€ 41 € 39

7
8

+ ε
1
8

− ε

20 19

Bid-Tac-Toe

€ 71 € 9
€ 61 € 19
€ 41 € 39

7
8

+ ε
1
8

− ε

40 39

Bid-Tac-Toe

€ 71 € 9
€ 61 € 19
€ 41 € 39

7
8

+ ε
1
8

− ε

40 39

Bid-Tac-Toe

€ 71 € 9
€ 61 € 19
€ 41 € 39

7
8

+ ε
1
8

− ε

40 39

Bid-Tac-Toe

€ 71 € 9
€ 61 € 19
€ 41 € 39

7
8

+ ε
1
8

− ε

40 39

[Lazarus et al. ’99, Develin & Payne ’08, Meir et al. ’18, Avni et al. ’19,…]

Does the threshold exist?

Bid-Tac-Toe

€ 71 € 9
€ 61 € 19
€ 41 € 39

7
8

+ ε
1
8

− ε

40 39

[Lazarus et al. ’99, Develin & Payne ’08, Meir et al. ’18, Avni et al. ’19,…]

Does the threshold exist?

Verify if the threshold < 0.5.

Bid-Tac-Toe

€ 71 € 9
€ 61 € 19
€ 41 € 39

7
8

+ ε
1
8

− ε

40 39

[Lazarus et al. ’99, Develin & Payne ’08, Meir et al. ’18, Avni et al. ’19,…]

Does the threshold exist?

Verify if the threshold < 0.5.

Characterize the winning strategies.

Two Ongoing Projects
Bidding games with charging

- State-dependent monetary incentives
Ex.: earns 50 EUR when captures 2 corners

- joint work with Guy Avni, Ehsan, and Tom

Two Ongoing Projects
Bidding games with charging

- State-dependent monetary incentives
Ex.: earns 50 EUR when captures 2 corners

Reach Safe Büchi Co-
Büchi Rabin Streett

Threshold ✔ ✔ ✔ ✔

Verification* coNP NP NP-
hard

coNP-
hard

Winning
strategies ✔ ✔ ✔ ✔

ΠP
2 ΣP

2

*for Richman bidding

- joint work with Guy Avni, Ehsan, and Tom

Two Ongoing Projects

φ1 ∧ φ2

System

Controller 1
for φ1

Controller2
for φ2

Auction-
based

scheduler

Active controller

Bidding games with charging Auction-based scheduling

- State-dependent monetary incentives
Ex.: earns 50 EUR when captures 2 corners

Reach Safe Büchi Co-
Büchi Rabin Streett

Threshold ✔ ✔ ✔ ✔

Verification* coNP NP NP-
hard

coNP-
hard

Winning
strategies ✔ ✔ ✔ ✔

ΠP
2 ΣP

2

*for Richman bidding

- joint work with Guy Avni, Ehsan, and Tom - joint work with Guy Avni and Suman Sadhukhan

Two Ongoing Projects

φ1 ∧ φ2

System

Controller 1
for φ1

Controller2
for φ2

Auction-
based

scheduler

Active controller

Bidding games with charging Auction-based scheduling

- State-dependent monetary incentives
Ex.: earns 50 EUR when captures 2 corners

Reach Safe Büchi Co-
Büchi Rabin Streett

Threshold ✔ ✔ ✔ ✔

Verification* coNP NP NP-
hard

coNP-
hard

Winning
strategies ✔ ✔ ✔ ✔

ΠP
2 ΣP

2

*for Richman bidding

- joint work with Guy Avni, Ehsan, and Tom - joint work with Guy Avni and Suman Sadhukhan

Automated Analysis
of Probabilistic Loops

Marcel Moosbrugger

ISTA – October 2023

stop := 0
y := 1
x := 0
while stop == 0:

stop := flip_coin()
y := 2y
x := x + 1

stop := 0
y := 1
x := 0
while stop == 0:

stop := flip_coin()
y := 2y
x := x + 1

Probabilistic programs/loops as universal models.

stop := 0
y := 1
x := 0
while stop == 0:

stop := flip_coin()
y := 2y
x := x + 1

Develop PL & verification techniques
to analyze probabilistic loops

MY PHD PROJECT

Termination Analysis
[ESOP 2021, FM 2021, FMSD 2022]

Invariant Synthesis
[OOPSLA 2022, SAS 2022, FMSD 2023]

Focus on: automation, exact results
(no sampling)

Sensitivity Analysis
[iFM 2023]

Predicting movement of robots under uncertainty
[QEST 2022, TOMACS 2023]

stop := 0
y := 1
x := 0
while stop == 0:

stop := flip_coin()
y := 2y
x := x + 1

Develop PL & verification techniques
to analyze probabilistic loops

MY PHD PROJECT

Focus on: automation, exact results
(no sampling)

Ongoing Work

Theoretical foundations: Hardness bounds
Stability of control systems with uncertainty

Polar Tool:
Probabilistic Loop Analyzer

https://github.com/probing-lab/polar

https://github.com/probing-lab/polar

Solving Stochastic Games
Reliably

Maximilian Weininger

ISTA Seminar
09.10.2023

Software has bugs

Software has bugs

https://bilder.t-online.de/b/76/51/02/04/id_76510204/tid_da/ein-herzschrittmacher-soll-leben-retten-hacker-koennten-ihn-als-mordwerkzeug-nutzen-.jpg

Software has bugs

https://miro.medium.com/max/1200/1*GRIl0B9HNJaTr7RVnqDRhg.jpeg
https://bilder.t-online.de/b/76/51/02/04/id_76510204/tid_da/ein-herzschrittmacher-soll-leben-retten-hacker-koennten-ihn-als-mordwerkzeug-nutzen-.jpg

Software has bugs

https://miro.medium.com/max/1200/1*GRIl0B9HNJaTr7RVnqDRhg.jpeg
https://il3.picdn.net/shutterstock/videos/10426736/thumb/1.jpg

https://bilder.t-online.de/b/76/51/02/04/id_76510204/tid_da/ein-herzschrittmacher-soll-leben-retten-hacker-koennten-ihn-als-mordwerkzeug-nutzen-.jpg

Software has bugs

https://miro.medium.com/max/1200/1*GRIl0B9HNJaTr7RVnqDRhg.jpeg
https://il3.picdn.net/shutterstock/videos/10426736/thumb/1.jpg
https://entrepreneursbreak.com/wp-content/uploads/2020/05/Credit-Score.jpg

https://bilder.t-online.de/b/76/51/02/04/id_76510204/tid_da/ein-herzschrittmacher-soll-leben-retten-hacker-koennten-ihn-als-mordwerkzeug-nutzen-.jpg

FORMAL
VERIFICATION

System Specification

Yes/No

Formal
Verification

Formal verification

System Specification

Yes/No

Formal
Verification

Formal verification with special effects

System Specification

Yes/No

Formal
Verification

Formal verification with special effects

- Probabilities
- Nondeterminism
- Limited information

System Specification

Yes/No

Formal
Verification

Formal verification with special effects

- Probabilities
- Nondeterminism
- Limited information

- Quantitative objectives
- Multiple objectives
- Risk measures

System Specification

Yes/No

Formal
Verification

Formal verification with special effects

- Probabilities
- Nondeterminism
- Limited information

- Quantitative objectives
- Multiple objectives
- Risk measures

- Controllers
- Explanations
- Certificates

Ground orderedness in superposition

Márton Hajdu

October 4, 2023

The superposition calculus

▶ The superposition calculus is the state-of-the-art approach for first-order
equational logic

s[u] ▷◁ t ∨ C l ≃ r ∨ D

(s[r] ▷◁ t ∨ C ∨ D)θ

where θ = mgu(u, l), u not a variable, rθ ̸⪰ lθ, tθ ̸⪰ s[u]θ and Cθ ̸⪰ s[u] ▷◁ tθ

▶ Strong restrictions on the inferences and redundancy elimination make it efficient

▶ It can also be adapted to arithmetic, induction, HOL, etc.

Example

Given f > a > b > c

P(f (f (a, x), c)) f (f (y , b), z) ≃ f (y , f (b, z))
θ =

x 7→ b,
y 7→ a,
z 7→ c

P(f (a, f (b, c))))

The superposition calculus

▶ The superposition calculus is the state-of-the-art approach for first-order
equational logic

s[u] ▷◁ t ∨ C l ≃ r ∨ D

(s[r] ▷◁ t ∨ C ∨ D)θ

where θ = mgu(u, l), u not a variable, rθ ̸⪰ lθ, tθ ̸⪰ s[u]θ and Cθ ̸⪰ s[u] ▷◁ tθ

▶ Strong restrictions on the inferences and redundancy elimination make it efficient

▶ It can also be adapted to arithmetic, induction, HOL, etc.

Example

Given f > a > b > c

P(f (f (a, x), c)) f (f (y , b), z) ≃ f (y , f (b, z))
θ =

x 7→ b,
y 7→ a,
z 7→ c

P(f (a, f (b, c))))

The superposition calculus

▶ The superposition calculus is the state-of-the-art approach for first-order
equational logic

s[u] ▷◁ t ∨ C l ≃ r ∨ D

(s[r] ▷◁ t ∨ C ∨ D)θ

where θ = mgu(u, l), u not a variable, rθ ̸⪰ lθ, tθ ̸⪰ s[u]θ and Cθ ̸⪰ s[u] ▷◁ tθ

▶ Strong restrictions on the inferences and redundancy elimination make it efficient

▶ It can also be adapted to arithmetic, induction, HOL, etc.

Example

Given f > a > b > c

P(f (f (a, x), c)) f (f (y , b), z) ≃ f (y , f (b, z))
θ =

x 7→ b,
y 7→ a,
z 7→ c

P(f (a, f (b, c))))

The superposition calculus

▶ The superposition calculus is the state-of-the-art approach for first-order
equational logic

s[u] ▷◁ t ∨ C l ≃ r ∨ D

(s[r] ▷◁ t ∨ C ∨ D)θ

where θ = mgu(u, l), u not a variable, rθ ̸⪰ lθ, tθ ̸⪰ s[u]θ and Cθ ̸⪰ s[u] ▷◁ tθ

▶ Strong restrictions on the inferences and redundancy elimination make it efficient

▶ It can also be adapted to arithmetic, induction, HOL, etc.

Example

Given f > a > b > c

P(f (f (a, x), c)) f (f (y , b), z) ≃ f (y , f (b, z))
θ =

x 7→ b,
y 7→ a,
z 7→ c

P(f (a, f (b, c))))

The superposition calculus

▶ The superposition calculus is the state-of-the-art approach for first-order
equational logic

s[u] ▷◁ t ∨ C l ≃ r ∨ D

(s[r] ▷◁ t ∨ C ∨ D)θ

where θ = mgu(u, l), u not a variable, rθ ̸⪰ lθ, tθ ̸⪰ s[u]θ and Cθ ̸⪰ s[u] ▷◁ tθ

▶ Strong restrictions on the inferences and redundancy elimination make it efficient

▶ It can also be adapted to arithmetic, induction, HOL, etc.

Example

Given f > a > b > c

P(f (f (a, x), c)) f (f (y , b), z) ≃ f (y , f (b, z))
θ =

x 7→ b,
y 7→ a,
z 7→ c

P(f (a, f (b, c))))

The superposition calculus

▶ The superposition calculus is the state-of-the-art approach for first-order
equational logic

s[u] ▷◁ t ∨ C l ≃ r ∨ D

(s[r] ▷◁ t ∨ C ∨ D)θ

where θ = mgu(u, l), u not a variable, rθ ̸⪰ lθ, tθ ̸⪰ s[u]θ and Cθ ̸⪰ s[u] ▷◁ tθ

▶ Strong restrictions on the inferences and redundancy elimination make it efficient

▶ It can also be adapted to arithmetic, induction, HOL, etc.

Example

Given f > a > b > c

P(f (f (a, x), c)) f (f (y , b), z) ≃ f (y , f (b, z))
θ =

x 7→ b,
y 7→ a,
z 7→ c

P(f (a, f (b, c))))

The orderedness redundancy criteria

Given f > a > b > c and clause f (x , y) ≃ f (y , x), this inference is redundant:

f (a, b) ≃ f (b, a)

P(f (f (a, b), c)) f (f (a, b), c) ≃ f (a, f (b, c))

reduces smaller than

P(f (f (a, x), c)) f (f (y , b), z) ≃ f (y , f (b, z))
θ =

x 7→ b,
y 7→ a,
z 7→ c

P(f (a, f (b, c))))

Orderedness is a generalization of compositeness from completion-based theorem
proving.

The orderedness redundancy criteria

Given f > a > b > c and clause f (x , y) ≃ f (y , x), this inference is redundant:

f (a, b) ≃ f (b, a)

P(f (f (a, b), c)) f (f (a, b), c) ≃ f (a, f (b, c))

reduces smaller than

P(f (f (a, x), c)) f (f (y , b), z) ≃ f (y , f (b, z))
θ =

x 7→ b,
y 7→ a,
z 7→ c

P(f (a, f (b, c))))

Orderedness is a generalization of compositeness from completion-based theorem
proving.

The orderedness redundancy criteria

Given f > a > b > c and clause f (x , y) ≃ f (y , x), this inference is redundant:

f (a, b) ≃ f (b, a)

P(f (f (a, b), c)) f (f (a, b), c) ≃ f (a, f (b, c))

reduces smaller than

P(f (f (a, x), c)) f (f (y , b), z) ≃ f (y , f (b, z))
θ =

x 7→ b,
y 7→ a,
z 7→ c

P(f (a, f (b, c))))

Orderedness is a generalization of compositeness from completion-based theorem
proving.

Ground orderedness

Given clauses {f (x , y) ≃ f (y , x), f (x , x) ≃ x}, consider the inference:

Q(f (f (x , y), z), f (y , x)) f (f (x , y), z) ≃ f (x , f (y , z))

Q(f (x , f (y , z)), f (y , x))

The inference is redundant w.r.t. ground orderedness!

Both orderedness and ground orderedness are currently being implemented in Vampire

Ground orderedness

Given clauses {f (x , y) ≃ f (y , x), f (x , x) ≃ x}, consider the inference:

f (x , y) ≃ f (y , x)

Q(f (f (x , y), z), f (y , x)) f (f (x , y), z) ≃ f (x , f (y , z))

assuming x > y or x < y

reduces smaller than

Q(f (f (x , y), z), f (y , x)) f (f (x , y), z) ≃ f (x , f (y , z))

Q(f (x , f (y , z)), f (y , x))

The inference is redundant w.r.t. ground orderedness!

Both orderedness and ground orderedness are currently being implemented in Vampire

Ground orderedness

Given clauses {f (x , y) ≃ f (y , x), f (x , x) ≃ x}, consider the inference:

f (x , x) ≃ x

Q(f (f (x , x), z), f (x , x)) f (f (x , x), z) ≃ f (x , f (x , z))

assuming x ∼ y

reduces smaller than

Q(f (f (x , y), z), f (y , x)) f (f (x , y), z) ≃ f (x , f (y , z))

Q(f (x , f (y , z)), f (y , x))

The inference is redundant w.r.t. ground orderedness!

Both orderedness and ground orderedness are currently being implemented in Vampire

Ground orderedness

Given clauses {f (x , y) ≃ f (y , x), f (x , x) ≃ x}, consider the inference:

f (x , x) ≃ x

Q(f (f (x , x), z), f (x , x)) f (f (x , x), z) ≃ f (x , f (x , z))

assuming x ∼ y

reduces smaller than

Q(f (f (x , y), z), f (y , x)) f (f (x , y), z) ≃ f (x , f (y , z))

Q(f (x , f (y , z)), f (y , x))

The inference is redundant w.r.t. ground orderedness!

Both orderedness and ground orderedness are currently being implemented in Vampire

Ground orderedness

Given clauses {f (x , y) ≃ f (y , x), f (x , x) ≃ x}, consider the inference:

f (x , x) ≃ x

Q(f (f (x , x), z), f (x , x)) f (f (x , x), z) ≃ f (x , f (x , z))

assuming x ∼ y

reduces smaller than

Q(f (f (x , y), z), f (y , x)) f (f (x , y), z) ≃ f (x , f (y , z))

Q(f (x , f (y , z)), f (y , x))

The inference is redundant w.r.t. ground orderedness!

Both orderedness and ground orderedness are currently being implemented in Vampire

Shorter, more usable proofs in SAT and beyond

Adrián Rebola‑Pardo
Vienna University of Technology
Johannes Kepler University

IST Austria
October 9th, 2023

Wait, wasn’t that a solved problem?

DRAT proofs haveweird semantics

can derive clauses not implied by the premises

mutation
semantics

new SAT proof
systems shorter proofs

easier to generate
clearer semantics

smaller unsat cores

can we extract interpolants?

extension to
QBF solving

can we unify QBF proof systems?

extension to
model counting

can we uniformly sample?

1

Wait, wasn’t that a solved problem?

DRAT proofs haveweird semantics
can derive clauses not implied by the premises

mutation
semantics

new SAT proof
systems shorter proofs

easier to generate
clearer semantics

smaller unsat cores

can we extract interpolants?

extension to
QBF solving

can we unify QBF proof systems?

extension to
model counting

can we uniformly sample?

1

Wait, wasn’t that a solved problem?

DRAT proofs haveweird semantics
can derive clauses not implied by the premises

mutation
semantics

new SAT proof
systems shorter proofs

easier to generate
clearer semantics

smaller unsat cores

can we extract interpolants?

extension to
QBF solving

can we unify QBF proof systems?

extension to
model counting

can we uniformly sample?

1

Wait, wasn’t that a solved problem?

DRAT proofs haveweird semantics
can derive clauses not implied by the premises

mutation
semantics

new SAT proof
systems

shorter proofs
easier to generate
clearer semantics

smaller unsat cores

can we extract interpolants?

extension to
QBF solving

can we unify QBF proof systems?

extension to
model counting

can we uniformly sample?

1

Wait, wasn’t that a solved problem?

DRAT proofs haveweird semantics
can derive clauses not implied by the premises

mutation
semantics

new SAT proof
systems shorter proofs

easier to generate
clearer semantics

smaller unsat cores

can we extract interpolants?

extension to
QBF solving

can we unify QBF proof systems?

extension to
model counting

can we uniformly sample?

1

Wait, wasn’t that a solved problem?

DRAT proofs haveweird semantics
can derive clauses not implied by the premises

mutation
semantics

new SAT proof
systems shorter proofs

easier to generate
clearer semantics

smaller unsat cores

can we extract interpolants?

extension to
QBF solving

can we unify QBF proof systems?

extension to
model counting

can we uniformly sample?

1

Wait, wasn’t that a solved problem?

DRAT proofs haveweird semantics
can derive clauses not implied by the premises

mutation
semantics

new SAT proof
systems shorter proofs

easier to generate
clearer semantics

smaller unsat cores

can we extract interpolants?

extension to
QBF solving

can we unify QBF proof systems?

extension to
model counting

can we uniformly sample?

1

Wait, wasn’t that a solved problem?

DRAT proofs haveweird semantics
can derive clauses not implied by the premises

mutation
semantics

new SAT proof
systems shorter proofs

easier to generate
clearer semantics

smaller unsat cores

can we extract interpolants?

extension to
QBF solving

can we unify QBF proof systems?

extension to
model counting

can we uniformly sample?

1

Recognizing an Owl·Bear in the Forest
Regular Languages of Tree-Width Bounded Graphs

Mark Chimes

October 4, 2023

Mark Chimes Recognizing an Owl·Bear in the Forest

Finite alphabet A of terminal symbols e.g. {a, b, c, . . . , z}

Regular languages
Regular Expression
Automaton
Generated by Regular
Grammar
Definable:
Monadic Second-Order
Logic
Recognizable:
Inverse image under
homomorphism into a finite
monoid

Words
Words form a monoid 〈Σ∗, ε, ·〉

owl · bear = owlbear

Mark Chimes Recognizing an Owl·Bear in the Forest

Finite alphabet A of terminal symbols e.g. {a, b, c, . . . , z}

Words
Words form a monoid 〈Σ∗, ε, ·〉

Graphs - Generalize Words
Label edges with symbols in A

Need to know how to
combine two graphs
Vertices are not ordered, but
finitely many are numbered
Graph operations combine
graphs along numbers

Graphs form a Multi-Sorted
Magma - generalizes Monoid.

owl · bear = owlbear

•

1 2
•

↑

1 • 2
=
•

1 • 2
•

a b

c d

a b

a b
a b

c d

Mark Chimes Recognizing an Owl·Bear in the Forest

Families of graphs (Languages) with bounded tree-width

Regular languages of Graphs
Regular Expression
Automaton
Generated by Regular
Grammar
Definable:
Monadic Second-Order
Logic with counting
Recognizable:
Inverse image under
homomorphism into a
locally-finite multi-sorted
Magma

Mark Chimes Recognizing an Owl·Bear in the Forest

Introduction
Background

Classical results
Our results

Stability in Matrix Games

K. Chatterjee1 R. Saona1 M. Oliu-Barton2

1IST Austria

2CEREMADE, CNRS, Université Paris Dauphine, PSL Research Institute

Raimundo Saona Value-Positivity for Matrix Games

Introduction
Background

Classical results
Our results

Main idea

Classical settings. Matrix games and Linear Programming (LP).
Classical question. Stability:

How do our objects of interest change upon perturbations?

Observables. Solutions and value of the problems.

How do solutions and value change
upon perturbations?

Raimundo Saona Value-Positivity for Matrix Games

Introduction
Background

Classical results
Our results

Matrix Games

j

i

 mi ,j

valM := max

p∈∆[m]
min

q∈∆[n]
ptMq .

M(ε) = M0 +M1ε .

Raimundo Saona Value-Positivity for Matrix Games

Introduction
Background

Classical results
Our results

Derivative of the value function [Mills56]

Define

DvalM(0+) := lim
ε→0+

valM(ε)− valM(0)

ε
.

Results.

1 Characterization of DvalM(0+).

2 (Poly-time) algorithm for computing it.

Theorem ([Mills56])

Given M(ε) = M0 +M1ε,

DvalM(0+) = valP(M0)×Q(M0)M1 .

Raimundo Saona Value-Positivity for Matrix Games

Introduction
Background

Classical results
Our results

Our framework

Polynomial matrix games. Matrix games where payoff entries are
given by polynomials.

M(ε) = M0 +M1ε+ . . .+MKε
K .

Definition (Value-positivity problem)

∃ε0 > 0 such that ∀ε ∈ [0, ε0] valM(ε) ≥ valM(0) .

Definition (Uniform value-positivity problem)

∃p0 ∈ ∆[m] ∃ε0 > 0 ∀ε ∈ [0, ε0] val(M(ε); p0) ≥ valM(0).

Definition (Functional form problem)

Return the maps valM(·) and p∗(·), for ε ∈ [0, ε0].

Raimundo Saona Value-Positivity for Matrix Games

Introduction
Background

Classical results
Our results

Polynomial matrix game

Consider ε > 0.

M(ε) =

(
1 −1
−1 1

)
+

(
1 −3
0 2

)
ε .

The optimal strategy is given by, for ε < 1/2,

p∗ε =

(
1 + ε

2 + 3ε
,
1 + 2ε

2 + 3ε

)t

.

Therefore,

valM(ε) =
ε2

2 + 3ε
.

Raimundo Saona Value-Positivity for Matrix Games

Introduction
Background

Classical results
Our results

Polynomial matrix game, negative direction

Consider ε > 0.

M(ε) =

(
1 −1
−1 1

)
+

(
−1 3
0 −2

)
ε .

The optimal strategy is given by, for ε < 2/3,

p∗ε =

(
1− ε

2− 3ε
,
1− 2ε

2− 3ε

)t

.

Therefore,

valM(ε) =
ε2

2− 3ε
.

Raimundo Saona Value-Positivity for Matrix Games

Statistical Monitoring of
Stochastic Systems

(with focus on Algorithmic Fairness)

2

f : Σ* → ℝ

some function

3

⃗X := (Xt)t>0

a stochastic process

4

t ∈ ℕ+

at any point in time

5

⃗xt := x1, …, xt

observe a realisation

6

𝔼(f(⃗X t) ∣ ⃗xI)
want to compute

I ⊆ [1; t]

7

Too many coins.
Example.

8

X1

X2

X3

9

X1

X2

X3

⋮ ⋮ ⋮ ⋮
Coin 5Coin 4 Coin 6 Coin 7

Coin 3Coin 2

Coin 1

⋮

HT

T T HH

10

⋮ ⋮ ⋮ ⋮
p5 = 0p4 = 1 p6 = 0.5 p7 = 0.5

p3 = 0.2p2 = 0

p1 = 0.5

⋮

HT

T T HH

Is this process “fair”

11

Many different definitions.

12

H Tℙ()−ℙ()

How fair is it…

13

…at time t?

14

⋮ ⋮ ⋮ ⋮
p5 = 0p4 = 1 p6 = 0.5 p7 = 0.5

p3 = 0.2p2 = 0

p1 = 0.5

⋮

HT

T T HH

𝔼(X3)
Property:

15

x3 = T

x2 = H

x1 = H

How fair is it…

16

…at this very moment?

17

⋮ ⋮ ⋮ ⋮
p5 = 0p4 = 1 p6 = 0.5 p7 = 0.5

p3 = 0.2p2 = 0

p1 = 0.5

⋮

HT

T T HH

𝔼(X3 |x1, x2)
Property:

The model could be…

18

… too big.
… wrong.
… hidden.

… mistrusted.

But maybe

19

you have some…

20

ℙ ∈ 𝒫

assumptions

21

̂Ef(⃗xt)

you estimate

22

What is the general setting?
The Big Picture.

23

xt+3 xt+2 xt+1 xt xt−1 xt−2 …⃗X

24

xt+3 xt+2 xt+1 𝒜 xt xt−1 xt−2 …⃗X

25

xt+3 xt+2 xt+1 𝒜 xt xt−1 xt−2 …

[l, u]

 with probability 𝔼(f(⃗X) ∣ ⃗xI) ∈ 𝒜(⃗xt) 1 − δ

⃗X

26

A quick overview.
Previous Work.

27

MCsSystem

ℙ(r |q)Property

Henzinger et al. “Monitoring Algorithmic Fairness.” CAV 2023.

28

some POMCs

𝔼(f(Xt:t+n))

Henzinger et al. “Monitoring Algorithmic Fairness under Partial Observations.” RV 2023.

System

Property

29

𝔼(Xt+1 ∣ ⃗xt) = 𝔼(Xt ∣ ⃗xt−1) + Δ(xt)System

𝔼(f(Xt) ∣ ⃗xt−1)Property

Henzinger et al. "Runtime Monitoring of Dynamic Fairness Properties." FAccT 2023.

30

What are we doing?
Summary.

31

Interested in monitoring “distributional” properties,
e.g. conditional expectation, of stochastic processes.

We focused on monitoring Algorithmic Fairness,
but those techniques have wide applicability.

Leverage tools from non-asymptotic statistics to
provide valid guarantees for each time step.

Use statistical monitoring to breach
the gap between the model and reality.

On the decidability
of algebraic loop analysis

Anton Varonka

2nd year PhD student supervised by Laura Kovács

Anton Varonka Program loops, algebraically 9th October 2023

In my PhD project, I explore the decidability landscape of
verification-motivated problems, in particular, those that underlie automated

reasoning about program loops.

code fragment ←→ behaviours

model loops as dynamical systems, i.e., algebraic program analysis

linear vs not

Anton Varonka Program loops, algebraically 9th October 2023

What is it all about

A simple loop acting on a vector x of integer variables.

Program correctness:

Termination on all branches

Finding good invariants

q0 q1
x := c

x := A1x + b1

x := A2x + b2

x := A3x + b3

Anton Varonka Program loops, algebraically 9th October 2023

Loops and invariants

Loop Invariant
invariant generation

loop synthesis

(x , y) := (0, 0)
while y < N do

x := x + 2y + 1
y := y + 1

y = x2

holds before and after
each iteration

(0, 0) (1, 1) (2, 4) . . .

For a polynomial invariant p = 0, synthesise a partially correct linear loop.

Anton Varonka Program loops, algebraically 9th October 2023

Loops and invariants

Loop Invariant
invariant generation

(x , y) := (0, 0)
while y < N do

x := x + 2y + 1
y := y + 1

y = x2

holds before and after
each iteration

(0, 0) (1, 1) (2, 4) . . .

For a polynomial invariant p = 0, synthesise a partially correct linear loop.

Anton Varonka Program loops, algebraically 9th October 2023

Loops and invariants

Loop Invariant
invariant generation

(x , y) := (0, 0)
while y < N do

x := x + 2y + 1
y := y + 1

y = x2

holds before

(0, 0)

(1, 1) (2, 4) . . .

For a polynomial invariant p = 0, synthesise a partially correct linear loop.

Anton Varonka Program loops, algebraically 9th October 2023

Loops and invariants

Loop Invariant
invariant generation

(x , y) := (0, 0)
while y < N do

x := x + 2y + 1
y := y + 1

y = x2

holds before and after
each iteration

(0, 0) (1, 1) (2, 4) . . .

For a polynomial invariant p = 0, synthesise a partially correct linear loop.

Anton Varonka Program loops, algebraically 9th October 2023

Loops and invariants

Loop Invariant
invariant generation

(x , y) := (0, 0)
while y < N do

x := x + 2y + 1
y := y + 1

y = x2

holds before and after
each iteration

(0, 0) (1, 1) (2, 4) . . .

For a loop L, generate all polynomial invariants p = 0 which L preserves.

Anton Varonka Program loops, algebraically 9th October 2023

Loops and invariants

Loop Invariant
loop synthesis

(x , y) := (0, 0)
while y < N do

x := x + 2y + 1
y := y + 1

y = x2

holds before and after
each iteration

(0, 0) (1, 1) (2, 4) . . .

For a polynomial invariant p = 0, synthesise a partially correct linear loop.

Anton Varonka Program loops, algebraically 9th October 2023

VAMOS!

Presenter: Marek Chalupa

October 9, 2023

Previously

Previously...

A long time ago
in a galaxy far, far away

≈ 2 years
Brno (aka. Wien-Nord)

...I got PhD from Masaryk University.

Static verification of software

• forward and backward symbolic execution

• k-induction, invariant generation, ...

• dependency analysis, program slicing

1 / 7

Previously...

A long time ago
in a galaxy far, far away

≈ 2 years
Brno (aka. Wien-Nord)

...I got PhD from Masaryk University.

Static verification of software

• forward and backward symbolic execution

• k-induction, invariant generation, ...

• dependency analysis, program slicing

1 / 7

Previously...

A long time ago
in a galaxy far, far away

≈ 2 years
Brno (aka. Wien-Nord)

...I got PhD from Masaryk University.

Static verification of software

• forward and backward symbolic execution

• k-induction, invariant generation, ...

• dependency analysis, program slicing

1 / 7

At ISTA

Runtime Verification

Observing a system as it is running and formally verifying properties of the run.

System

ϕ

Monitor
true
false
?

Q1: How to generate
efficient monitors?

Q2: How to (efficiently)
trace events?

2 / 7

Runtime Verification

Observing a system as it is running and formally verifying properties of the run.

System

ϕ

Monitor
true
false
?

Q1: How to generate
efficient monitors?

Q2: How to (efficiently)
trace events?

2 / 7

Runtime Verification

Observing a system as it is running and formally verifying properties of the run.

System

ϕ

Monitor
true
false
?

Q1: How to generate
efficient monitors?

Q2: How to (efficiently)
trace events?

2 / 7

Project #1: VAMOS

VAMOS

VAMOS is a runtime monitoring framework

• written in C, C++, Python, and Rust

Team:

• M., Tom Henzinger, Stefanie M. Lei, Fabian Muehlboeck

3 / 7

VAMOS

VAMOS is a runtime monitoring framework

• written in C, C++, Python, and Rust

Team:

• M., Tom Henzinger, Stefanie M. Lei, Fabian Muehlboeck

3 / 7

VAMOS

Goals of VAMOS are:

• provide basic building blocks for implementations of monitors
• tracing events and transmitting them to monitors,
• events and streams pre-processing and transformations

• support connecting heterogeneous event sources to different monitors
(with best-effort and black-box monitoring in mind)

• focus on scenarios with multiple parallel streams of events

4 / 7

VAMOS

Goals of VAMOS are:

• provide basic building blocks for implementations of monitors
• tracing events and transmitting them to monitors,
• events and streams pre-processing and transformations

• support connecting heterogeneous event sources to different monitors
(with best-effort and black-box monitoring in mind)

• focus on scenarios with multiple parallel streams of events

4 / 7

VAMOS

Goals of VAMOS are:

• provide basic building blocks for implementations of monitors
• tracing events and transmitting them to monitors,
• events and streams pre-processing and transformations

• support connecting heterogeneous event sources to different monitors
(with best-effort and black-box monitoring in mind)

• focus on scenarios with multiple parallel streams of events

4 / 7

Project #2:
Monitoring hyperproperties

Hyperproperties

Properties that relate multiple execution traces.

For each trace that contains event A, there exists a different trace with A
on the same position.

5 / 7

Hyperproperties

Properties that relate multiple execution traces.

For each trace that contains event A, there exists a different trace with A
on the same position.

5 / 7

Monitoring hyperproperties

Setup:

• new traces are announced anytime on runtime

• new events come incrementally to traces

We work with:

• Multi-trace prefix transducers

• Hypernode automata and logic

Team:

• M., Ana Costa, Tom Henzinger, Oldouz Neysari

6 / 7

Monitoring hyperproperties

Setup:

• new traces are announced anytime on runtime

• new events come incrementally to traces

We work with:

• Multi-trace prefix transducers

• Hypernode automata and logic

Team:

• M., Ana Costa, Tom Henzinger, Oldouz Neysari

6 / 7

Monitoring hyperproperties

Setup:

• new traces are announced anytime on runtime

• new events come incrementally to traces

We work with:

• Multi-trace prefix transducers

• Hypernode automata and logic

Team:

• M., Ana Costa, Tom Henzinger, Oldouz Neysari

6 / 7

That’s it

The presentation raises more questions than answers?

Good – come and talk to me :)

7 / 7

That’s it

The presentation raises more questions than answers?

Good – come and talk to me :)

7 / 7

CirVer
Verifying algebraic circuits

Thomas Hader, Daniela Kaufmann

October, 9 2023

zk-SNARKs

zk-Proof: Prover P ensures verifier V that a valid computation of code is known.

zero-knowledge proof code
written in DSL

component unit[k - 1];

for (var i = 1; i < k; i++){
unit[i - 1].a <== a[i] * b[i];

Algebraic circuit
(e.g. R1CS, PLONKish)

set of polynomial constraints in Fp

x1 = x12x8 − 2x5x8 + x3
x7 = x1x5

generated to code for
prover P and verifier V

com
piler

optim
izer

Verifying algebraic circuits

Verification target: Circuit must not be under-constraint (otherwise incorrect
execution traces are accepted).

Algebraic Circuit
(e.g. R1CS, PLONKish)

set of polynomial constraints in Fp

x1 = x12x8 − 2x5x8 + x3
x7 = x1x5

SMT solver for Fp (e.g. [1])

multiple queries to general purpose solver
solver re-detects circuit structure

CirVer
generates GB from Circuit
circuit structure is directly utilized
significantly cheaper GB generation
GB can be used for multiple specifications

SM
T
en
co
din

g

circuit

[1] Hader, Kaufmann, Kovács. SMT Solving over Finite Field Arithmetic. LPAR 2023

	01_Pastva
	02_Zikelic
	03_Eisenhofer
	04_OliveiradaCosta
	title
	title
	title

	05_Niessen
	06_Yu
	References
	References

	07_Mazzocchi
	08_Thejaswini
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

	09_Rath
	10_Amrollahi
	11_Hetzenberger
	References

	12_Hamada
	13_Karimi
	14_Sextl
	15_Hozzova
	16_Muroya
	17_Kaufmann
	Slide 1
	Slide 2
	Slide 3
	Slide 4

	18_Schoisswohl
	19_Mallik
	20_Moosbrugger
	21_Weininger
	22_Hajdu
	23_Rebola-Pardo
	24_Chimes
	25_Saona
	Introduction
	Background
	Classical results
	Our results

	26_Kueffner
	27_Varonka
	28_Chalupa
	Previously
	At ISTA
	Project #1: Vamos
	Project #2: Monitoring hyperproperties

	29_Hader

